7,830 research outputs found

    Fame for sale: efficient detection of fake Twitter followers

    Get PDF
    Fake followers\textit{Fake followers} are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere - hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel Class A\textit{Class A} classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier. The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers

    Entity reconciliation in big data sources: A systematic mapping study

    Get PDF
    The entity reconciliation (ER) problem aroused much interest as a research topic in today’s Big Dataera, full of big and open heterogeneous data sources. This problem poses when relevant information ona topic needs to be obtained using methods based on: (i) identifying records that represent the samereal world entity, and (ii) identifying those records that are similar but do not correspond to the samereal-world entity. ER is an operational intelligence process, whereby organizations can unify differentand heterogeneous data sources in order to relate possible matches of non-obvious entities. Besides, thecomplexity that the heterogeneity of data sources involves, the large number of records and differencesamong languages, for instance, must be added. This paper describes a Systematic Mapping Study (SMS) ofjournal articles, conferences and workshops published from 2010 to 2017 to solve the problem describedbefore, first trying to understand the state-of-the-art, and then identifying any gaps in current research.Eleven digital libraries were analyzed following a systematic, semiautomatic and rigorous process thathas resulted in 61 primary studies. They represent a great variety of intelligent proposals that aim tosolve ER. The conclusion obtained is that most of the research is based on the operational phase asopposed to the design phase, and most studies have been tested on real-world data sources, where a lotof them are heterogeneous, but just a few apply to industry. There is a clear trend in research techniquesbased on clustering/blocking and graphs, although the level of automation of the proposals is hardly evermentioned in the research work.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2016-76956-C3-2-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    A Hybrid Approach for Android Malware Detection and Family Classification

    Get PDF
    With the increase in the popularity of mobile devices, malicious applications targeting Android platform have greatly increased. Malware is coded so prudently that it has become very complicated to identify. The increase in the large amount of malware every day has made the manual approaches inadequate for detecting the malware. Nowadays, a new malware is characterized by sophisticated and complex obfuscation techniques. Thus, the static malware analysis alone is not enough for detecting it. However, dynamic malware analysis is appropriate to tackle evasion techniques but incapable to investigate all the execution paths and also it is very time consuming. So, for better detection and classification of Android malware, we propose a hybrid approach which integrates the features obtained after performing static and dynamic malware analysis. This approach tackles the problem of analyzing, detecting and classifying the Android malware in a more efficient manner. In this paper, we have used a robust set of features from static and dynamic malware analysis for creating two datasets i.e. binary and multiclass (family) classification datasets. These are made publically available on GitHub and Kaggle with the aim to help researchers and anti-malware tool creators for enhancing or developing new techniques and tools for detecting and classifying Android malware. Various machine learning algorithms are employed to detect and classify malware using the features extracted after performing static and dynamic malware analysis. The experimental outcomes indicate that hybrid approach enhances the accuracy of detection and classification of Android malware as compared to the case when static and dynamic features are considered alone
    • …
    corecore