5,522 research outputs found

    A fast and well-conditioned spectral method for singular integral equations

    Get PDF
    We develop a spectral method for solving univariate singular integral equations over unions of intervals by utilizing Chebyshev and ultraspherical polynomials to reformulate the equations as almost-banded infinite-dimensional systems. This is accomplished by utilizing low rank approximations for sparse representations of the bivariate kernels. The resulting system can be solved in O(m2n){\cal O}(m^2n) operations using an adaptive QR factorization, where mm is the bandwidth and nn is the optimal number of unknowns needed to resolve the true solution. The complexity is reduced to O(mn){\cal O}(m n) operations by pre-caching the QR factorization when the same operator is used for multiple right-hand sides. Stability is proved by showing that the resulting linear operator can be diagonally preconditioned to be a compact perturbation of the identity. Applications considered include the Faraday cage, and acoustic scattering for the Helmholtz and gravity Helmholtz equations, including spectrally accurate numerical evaluation of the far- and near-field solution. The Julia software package SingularIntegralEquations.jl implements our method with a convenient, user-friendly interface

    The paradigm of the area law and the structure of transversal and longitudinal lightfront degrees of freedom

    Full text link
    It is shown that an algebraically defined holographic projection of a QFT onto the lightfront changes the local quantum properties in a very drastic way. The expected ubiquitous vacuum polarization characteristic of QFT is confined to the lightray (longitudinal) direction, whereas operators whose localization is transversely separated are completely free of vacuum correlations. This unexpected ''transverse return to QM'' combined with the rather universal nature of the strongly longitudinal correlated vacuum correlations (which turn out to be described by rather kinematical chiral theories) leads to a d-2 dimensional area structure of the d-1 dimensional lightfront theory. An additive transcription in terms of an appropriately defined entropy related to the vacuum restricted to the horizon is proposed and its model independent universality aspects which permit its interpretation as a quantum candidate for Bekenstein's area law are discussed. The transverse tensor product foliation structure of lightfront degrees of freedom is essential for the simplifying aspects of the algebraic lightcone holography. Key-words: Quantum field theory; Mathematical physics, Quantum gravityComment: 16 pages latex, identical to version published in JPA: Math. Gen. 35 (2002) 9165-918

    On Rigidity of 3d Asymptotic Symmetry Algebras

    Full text link
    We study rigidity and stability of infinite dimensional algebras which are not subject to the Hochschild-Serre factorization theorem. In particular, we consider algebras appearing as asymptotic symmetries of three dimensional spacetimes, the BMS3, u(1) Kac-Moody and Virasoro algebras. We construct and classify the family of algebras which appear as deformations of BMS3, u(1) Kac-Moody and their central extensions by direct computations and also by cohomological analysis. The Virasoro algebra appears as a specific member in this family of rigid algebras; for this case stabilization procedure is inverse of the In\"on\"u-Wigner contraction relating Virasoro to BMS3 algebra. We comment on the physical meaning of deformation and stabilization of these algebras and relevance of the family of rigid algebras we obtainComment: 50 pages, one figure and two tables; v2: minor improvements, references adde

    Exact stabilization of entangled states in finite time by dissipative quantum circuits

    Get PDF
    Open quantum systems evolving according to discrete-time dynamics are capable, unlike continuous-time counterparts, to converge to a stable equilibrium in finite time with zero error. We consider dissipative quantum circuits consisting of sequences of quantum channels subject to specified quasi-locality constraints, and determine conditions under which stabilization of a pure multipartite entangled state of interest may be exactly achieved in finite time. Special emphasis is devoted to characterizing scenarios where finite-time stabilization may be achieved robustly with respect to the order of the applied quantum maps, as suitable for unsupervised control architectures. We show that if a decomposition of the physical Hilbert space into virtual subsystems is found, which is compatible with the locality constraint and relative to which the target state factorizes, then robust stabilization may be achieved by independently cooling each component. We further show that if the same condition holds for a scalable class of pure states, a continuous-time quasi-local Markov semigroup ensuring rapid mixing can be obtained. Somewhat surprisingly, we find that the commutativity of the canonical parent Hamiltonian one may associate to the target state does not directly relate to its finite-time stabilizability properties, although in all cases where we can guarantee robust stabilization, a (possibly non-canonical) commuting parent Hamiltonian may be found. Beside graph states, quantum states amenable to finite-time robust stabilization include a class of universal resource states displaying two-dimensional symmetry-protected topological order, along with tensor network states obtained by generalizing a construction due to Bravyi and Vyalyi. Extensions to representative classes of mixed graph-product and thermal states are also discussed.Comment: 20 + 9 pages, 9 figure

    Advances in R-matrices and their applications (after Maulik-Okounkov, Kang-Kashiwara-Kim-Oh,...)

    Full text link
    R-matrices are the solutions of the Yang-Baxter equation. At the origin of the quantum group theory, they may be interpreted as intertwining operators. Recent advances have been made independently in different directions. Maulik-Okounkov have given a geometric approach to R-matrices with new tools in symplectic geometry, the stable envelopes. Kang-Kashiwara-Kim-Oh proved a conjecture on the categorification of cluster algebras by using R-matrices in a crucial way. Eventually, a better understanding of the action of transfer-matrices obtained from R-matrices led to the proof of several conjectures about the corresponding quantum integrable systems.Comment: This is an English translation of the Bourbaki seminar 1129 (March 2017). The French version will appear in Ast\'erisqu
    • …
    corecore