25,763 research outputs found

    Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction

    Full text link
    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question---correlation, predictability, predictive cost, observer synchronization, and the like---induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II, to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht

    A decompilation of the pi-calculus and its application to termination

    Get PDF
    We study the correspondence between a concurrent lambda-calculus in administrative, continuation passing style and a pi-calculus and we derive a termination result for the latter

    High energy scattering in QCD: dipole approach with Pomeron loops

    Full text link
    This is the talk given at ``Gribov-75 Memorial Workshop on Quarks, Hadrons, and Strong Interactions", May 22-24, 2005, Budapest. Hungary. In this talk we discuss the BFKL Pomeron Calculus and its interrelation with thecolour dipole approach. The two key problems we consider are the probabilistic interpretation of the BFKL Pomeron Calculus and the possiblescenario for the asymptotic behaviour of the scattering amplitude at high energyin QCD.Comment: 16pages, 2 figures in eps file

    The First-Order Hypothetical Logic of Proofs

    Get PDF
    The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [​[t]​]​A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[​[t]​]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [​[t]​]​A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Closed nominal rewriting and efficiently computable nominal algebra equality

    Full text link
    We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of the lambda-calculus and first-order logic.Comment: In Proceedings LFMTP 2010, arXiv:1009.218

    Process Calculi Abstractions for Biology

    Get PDF
    Several approaches have been proposed to model biological systems by means of the formal techniques and tools available in computer science. To mention just a few of them, some representations are inspired by Petri Nets theory, and some other by stochastic processes. A most recent approach consists in interpreting the living entities as terms of process calculi where the behavior of the represented systems can be inferred by applying syntax-driven rules. A comprehensive picture of the state of the art of the process calculi approach to biological modeling is still missing. This paper goes in the direction of providing such a picture by presenting a comparative survey of the process calculi that have been used and proposed to describe the behavior of living entities. This is the preliminary version of a paper that was published in Algorithmic Bioprocesses. The original publication is available at http://www.springer.com/computer/foundations/book/978-3-540-88868-

    On the enumeration of closures and environments with an application to random generation

    Get PDF
    Environments and closures are two of the main ingredients of evaluation in lambda-calculus. A closure is a pair consisting of a lambda-term and an environment, whereas an environment is a list of lambda-terms assigned to free variables. In this paper we investigate some dynamic aspects of evaluation in lambda-calculus considering the quantitative, combinatorial properties of environments and closures. Focusing on two classes of environments and closures, namely the so-called plain and closed ones, we consider the problem of their asymptotic counting and effective random generation. We provide an asymptotic approximation of the number of both plain environments and closures of size nn. Using the associated generating functions, we construct effective samplers for both classes of combinatorial structures. Finally, we discuss the related problem of asymptotic counting and random generation of closed environemnts and closures
    corecore