3,512 research outputs found

    Accelerating sequential programs using FastFlow and self-offloading

    Full text link
    FastFlow is a programming environment specifically targeting cache-coherent shared-memory multi-cores. FastFlow is implemented as a stack of C++ template libraries built on top of lock-free (fence-free) synchronization mechanisms. In this paper we present a further evolution of FastFlow enabling programmers to offload part of their workload on a dynamically created software accelerator running on unused CPUs. The offloaded function can be easily derived from pre-existing sequential code. We emphasize in particular the effective trade-off between human productivity and execution efficiency of the approach.Comment: 17 pages + cove

    On Designing Multicore-aware Simulators for Biological Systems

    Full text link
    The stochastic simulation of biological systems is an increasingly popular technique in bioinformatics. It often is an enlightening technique, which may however result in being computational expensive. We discuss the main opportunities to speed it up on multi-core platforms, which pose new challenges for parallelisation techniques. These opportunities are developed in two general families of solutions involving both the single simulation and a bulk of independent simulations (either replicas of derived from parameter sweep). Proposed solutions are tested on the parallelisation of the CWC simulator (Calculus of Wrapped Compartments) that is carried out according to proposed solutions by way of the FastFlow programming framework making possible fast development and efficient execution on multi-cores.Comment: 19 pages + cover pag

    Active data structures on GPGPUs

    Get PDF
    Active data structures support operations that may affect a large number of elements of an aggregate data structure. They are well suited for extremely fine grain parallel systems, including circuit parallelism. General purpose GPUs were designed to support regular graphics algorithms, but their intermediate level of granularity makes them potentially viable also for active data structures. We consider the characteristics of active data structures and discuss the feasibility of implementing them on GPGPUs. We describe the GPU implementations of two such data structures (ESF arrays and index intervals), assess their performance, and discuss the potential of active data structures as an unconventional programming model that can exploit the capabilities of emerging fine grain architectures such as GPUs

    Towards an Adaptive Skeleton Framework for Performance Portability

    Get PDF
    The proliferation of widely available, but very different, parallel architectures makes the ability to deliver good parallel performance on a range of architectures, or performance portability, highly desirable. Irregularly-parallel problems, where the number and size of tasks is unpredictable, are particularly challenging and require dynamic coordination. The paper outlines a novel approach to delivering portable parallel performance for irregularly parallel programs. The approach combines declarative parallelism with JIT technology, dynamic scheduling, and dynamic transformation. We present the design of an adaptive skeleton library, with a task graph implementation, JIT trace costing, and adaptive transformations. We outline the architecture of the protoype adaptive skeleton execution framework in Pycket, describing tasks, serialisation, and the current scheduler.We report a preliminary evaluation of the prototype framework using 4 micro-benchmarks and a small case study on two NUMA servers (24 and 96 cores) and a small cluster (17 hosts, 272 cores). Key results include Pycket delivering good sequential performance e.g. almost as fast as C for some benchmarks; good absolute speedups on all architectures (up to 120 on 128 cores for sumEuler); and that the adaptive transformations do improve performance

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Dynamic resource allocation in a hierarchical multiprocessor system: A preliminary study

    Get PDF
    An integrated system approach to dynamic resource allocation is proposed. Some of the problems in dynamic resource allocation and the relationship of these problems to system structures are examined. A general dynamic resource allocation scheme is presented. A hierarchial system architecture which dynamically maps between processor structure and programs at multiple levels of instantiations is described. Simulation experiments were conducted to study dynamic resource allocation on the proposed system. Preliminary evaluation based on simple dynamic resource allocation algorithms indicates that with the proposed system approach, the complexity of dynamic resource management could be significantly reduced while achieving reasonable effective dynamic resource allocation

    Parallelism through Digital Circuit Design

    Get PDF
    Two ways to exploit chips with a very large number of transistors are multicore processors and programmable logic chips. Some data parallel algorithms can be executed efficiently on ordinary parallel computers, including multicores. A class of data parallel algorithms is identified which have characteristics that make implementation on multiprocessors inefficient, but they are well suited for direct design as digital circuits. This leads to a programming model called circuit parallelism. The characteristics of circuit parallel algorithms are discussed, and a prototype system for supporting them is described
    • …
    corecore