96 research outputs found

    Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations

    Get PDF
    In this manuscript, we introduce a spectral technique for approximating the variable-order fractional Riccati equation (VO-FRDEs). Firstly, the solution and its space fractional derivatives is expanded as shifted Chebyshev polynomials series. Then we determine the expansion coefficients by reducing the VO-FRDEs and its conditions to a system of algebraic equations. We show the accuracy and applicability of our numerical approach through four numerical examples. &nbsp

    Numerical solution of fractional partial differential equations by spectral methods

    Get PDF
    Fractional partial differential equations (FPDEs) have become essential tool for the modeling of physical models by using spectral methods. In the last few decades, spectral methods have been developed for the solution of time and space dimensional FPDEs. There are different types of spectral methods such as collocation methods, Tau methods and Galerkin methods. This research work focuses on the collocation and Tau methods to propose an efficient operational matrix methods via Genocchi polynomials and Legendre polynomials for the solution of two and three dimensional FPDEs. Moreover, in this study, Genocchi wavelet-like basis method and Genocchi polynomials based Ritz- Galerkin method have been derived to deal with FPDEs and variable- order FPDEs. The reason behind using the Genocchi polynomials is that, it helps to generate functional expansions with less degree and small coefficients values to derive the operational matrix of derivative with less computational complexity as compared to Chebyshev and Legendre Polynomials. The results have been compared with the existing methods such as Chebyshev wavelets method, Legendre wavelets method, Adomian decomposition method, Variational iteration method, Finite difference method and Finite element method. The numerical results have revealed that the proposed methods have provided the better results as compared to existing methods due to minimum computational complexity of derived operational matrices via Genocchi polynomials. Additionally, the significance of the proposed methods has been verified by finding the error bound, which shows that the proposed methods have provided better approximation values for under consideration FPDEs

    Accurate Spectral Algorithms for Solving Variable-order Fractional Percolation Equations

    Get PDF
    A high accurate spectral algorithm for one-dimensional variable-order fractional percolation equations (VO-FPEs) is considered.We propose a shifted Legendre Gauss-Lobatto collocation (SL-GLC) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the proposed problem. Firstly, the solution and its space fractional derivatives are expanded as shifted Legendre polynomials series. Then, we determine the expansion coefficients by reducing the VO-FPEs and its conditions to a system of ordinary differential equations (SODEs) in time. The numerical approximation of SODEs is achieved by means of the SC-GR-C method. The under-study’s problem subjected to the Dirichlet or non-local boundary conditions is presented and compared with the results in literature, which reveals wonderful results

    An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay

    Full text link
    In this paper, we construct and analyze a linearized finite difference/Galerkin-Legendre spectral scheme for the nonlinear multiterm Caputo time fractional-order reaction-diffusion equation with time delay and Riesz space fractional derivatives. The temporal fractional orders in the considered model are taken as 0<β0<β1<β2<⋯<βm<1. The problem is first approximated by the L1 difference method on the temporal direction, and then, the Galerkin-Legendre spectral method is applied on the spatial discretization. Armed by an appropriate form of discrete fractional Grönwall inequalities, the stability and convergence of the fully discrete scheme are investigated by discrete energy estimates. We show that the proposed method is stable and has a convergent order of 2-βm in time and an exponential rate of convergence in space. We finally provide some numerical experiments to show the efficacy of the theoretical results. © 2021 A. K. Omran et al.A. K. Omran is funded by a scholarship under the joint executive program between the Arab Republic of Egypt and Russian Federation. M. A. Zaky wishes to acknowledge the support of the Nazarbayev University Program (091019CRP2120). M. A. Zaky wishes also to acknowledge the partial support of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant “Dynamical Analysis and Synchronization of Complex Neural Networks with Its Applications”)

    Computational and numerical analysis of differential equations using spectral based collocation method.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.In this thesis, we develop accurate and computationally efficient spectral collocation-based methods, both modified and new, and apply them to solve differential equations. Spectral collocation-based methods are the most commonly used methods for approximating smooth solutions of differential equations defined over simple geometries. Procedurally, these methods entail transforming the gov erning differential equation(s) into a system of linear algebraic equations that can be solved directly. Owing to the complexity of expanding the numerical algorithms to higher dimensions, as reported in the literature, researchers often transform their models to reduce the number of variables or narrow them down to problems with fewer dimensions. Such a process is accomplished by making a series of assumptions that limit the scope of the study. To address this deficiency, the present study explores the development of numerical algorithms for solving ordinary and partial differential equations defined over simple geometries. The solutions of the differential equations considered are approximated using interpolating polynomials that satisfy the given differential equation at se lected distinct collocation points preferably the Chebyshev-Gauss-Lobatto points. The size of the computational domain is particularly emphasized as it plays a key role in determining the number of grid points that are used; a feature that dictates the accuracy and the computational expense of the spectral method. To solve differential equations defined on large computational domains much effort is devoted to the development and application of new multidomain approaches, based on decomposing large spatial domain(s) into a sequence of overlapping subintervals and a large time interval into equal non-overlapping subintervals. The rigorous analysis of the numerical results con firms the superiority of these multiple domain techniques in terms of accuracy and computational efficiency over the single domain approach when applied to problems defined over large domains. The structure of the thesis indicates a smooth sequence of constructing spectral collocation method algorithms for problems across different dimensions. The process of switching between dimensions is explained by presenting the work in chronological order from a simple one-dimensional problem to more complex higher-dimensional problems. The preliminary chapter explores solutions of or dinary differential equations. Subsequent chapters then build on solutions to partial differential i equations in order of increasing computational complexity. The transition between intermediate dimensions is demonstrated and reinforced while highlighting the computational complexities in volved. Discussions of the numerical methods terminate with development and application of a new method namely; the trivariate spectral collocation method for solving two-dimensional initial boundary value problems. Finally, the new error bound theorems on polynomial interpolation are presented with rigorous proofs in each chapter to benchmark the adoption of the different numerical algorithms. The numerical results of the study confirm that incorporating domain decomposition techniques in spectral collocation methods work effectively for all dimensions, as we report highly accurate results obtained in a computationally efficient manner for problems defined on large do mains. The findings of this study thus lay a solid foundation to overcome major challenges that numerical analysts might encounter

    Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media

    Get PDF
    We present a stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer learning for heterogeneous porous media. We first carry out a sensitivity analysis to determine the key hyper-parameters of the network to reduce the search space and subsequently employ hyper-parameter optimization to finally obtain the parameter values. The presented NAS based DCM also saves the weights and biases of the most favorable architectures, which is then used in the fine-tuning process. We also employ transfer learning techniques to drastically reduce the computational cost. The presented DCM is then applied to the stochastic analysis of heterogeneous porous material. Therefore, a three dimensional stochastic flow model is built providing a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. The performance of the presented NAS based DCM is verified in different dimensions using the method of manufactured solutions. We show that it significantly outperforms finite difference methods in both accuracy and computational cost. © 2022, The Author(s)

    On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations

    Get PDF
    International audienceThe purpose of this paper is to discuss some recent developments concerning the numerical simulation of space and time fractional Schrödinger and Gross-Pitaevskii equations. In particular, we address some questions related to the discretization of the models (order of accuracy and fast implementation) and clarify some of their dynamical properties. Some numerical simulations illustrate these points
    corecore