20,701 research outputs found

    A semi-implicit Hall-MHD solver using whistler wave preconditioning

    Full text link
    The dispersive character of the Hall-MHD solutions, in particular the whistler waves, is a strong restriction to numerical treatments of this system. Numerical stability demands a time step dependence of the form Δt(Δx)2\Delta t\propto (\Delta x)^2 for explicit calculations. A new semi--implicit scheme for integrating the induction equation is proposed and applied to a reconnection problem. It it based on a fix point iteration with a physically motivated preconditioning. Due to its convergence properties, short wavelengths converge faster than long ones, thus it can be used as a smoother in a nonlinear multigrid method

    A moving mesh method for one-dimensional hyperbolic conservation laws

    Get PDF
    We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods developed to solve hyperbolic problems use a fully implicit discretization for the coupled solution-mesh equations, and so suffer from a significant degree of numerical stiffness. We employ a semi-implicit approach that couples the moving mesh equation to an efficient, explicit solver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a fixed, uniform mesh, our method exhibits more accurate resolution of discontinuities for a similar level of computational work

    Adaptive time-stepping for incompressible flow. Part II: Navier-Stokes equations

    Get PDF
    We outline a new class of robust and efficient methods for solving the Navier- Stokes equations. We describe a general solution strategy that has two basic building blocks: an implicit time integrator using a stabilized trapezoid rule with an explicit Adams-Bashforth method for error control, and a robust Krylov subspace solver for the spatially discretized system. We present numerical experiments illustrating the potential of our approach. © 2010 Society for Industrial and Applied Mathematics
    corecore