106 research outputs found

    Neuromodulators for Primary Headache Disorders: A Review

    Get PDF
    Primary headache disorders are among the most common and disabling globally. Pharmacological treatments are often insufficient, poorly tolerated, have side effects and the majority of patients are unable to complete their treatment. Understanding the neural pain pathways of these disorders has led to the development of alternative therapies. Electrical nerve stimulation is a form of pain modulation with few side effects for the treatment of primary headache disorders. Different neuromodulation approaches, both invasive and non-invasive, have rapidly led to new approaches for the treatment of patients suffering from headache, particularly those who have failed traditional pharmacotherapy. Non-invasive treatment methods are safe, practical and well-tolerated compared to alternatives. This paper details recent evidence-based advances in neuromodulators for primary headache disorders such as migraine and trigeminal autonomic cephalalgias (in particular, cluster headache) including non-invasive commercial devices used for migraine and cluster headache. The target neural structures, their advantages and disadvantages and their application in headache treatment are discussed. Examples of using neuromodulation to manage primary headache disorders are discussed. Both invasive stimulations e.g. of occipital and vagus nerves, the sphenopalatine ganglion, deep brain and spinal cord, and non-invasive, e.g. stimulation of the frontal, cervical and auricular vagus nerves, transcranial magnetic and transcranial direct current stimulation, are detailed

    Neuromodulation in Urology: Current Trends and Future Applications

    Get PDF
    Urological applications of neuromodulation and neurostimulation are among the most evolving fields for these technologies. First approved for management of refractory urge incontinence, different modalities of neuromodulation and stimulation have been tested, applied and verified for a vast spectrum of voiding and pelvic floor dysfunction disorders. The modalities of delivering this treatment have also evolved in the last three decades, with a focus on sacral neuromodulation. The experimental and established “off-label” applications of neuromodulation have also encompassed chronic pelvic pain disorders, including chronic prostatitis and bladder pain syndrome, among others. In this chapter, we discuss all the hypothesized theories suggested on how this technology provides therapeutic potential for a number of chronic and debilitating urological conditions, the modes of delivery be it anterior, sacral, and posterior tibial to name a few, and the evolving and future applications

    Neurostimulateur hautement intégré et nouvelle stratégie de stimulation pour améliorer la miction chez les paraplégiques

    Get PDF
    RÉSUMÉ Une lĂ©sion de la moelle Ă©piniĂšre est un problĂšme dĂ©vastateur mĂ©dicalement et socialement. Pour la population des États-Unis seulement, il y a prĂšs de 10 000 nouveaux cas chaque annĂ©e. A cause des nombreux types de lĂ©sions possibles, divers degrĂ©s de dysfonctionnement du bas appareil urinaire peuvent en dĂ©couler. Une lĂ©sion est dite complĂšte lors d’une perte totale des fonctions sensorielles et motrices volontaires en dessous du niveau de la lĂ©sion. Une lĂ©sion incomplĂšte implique que certaines activitĂ©s sensorielles et/ou motrices soient encore prĂ©sentes. Si la lĂ©sion se produit au dessus du cĂŽne mĂ©dullaire, la vessie dĂ©veloppera une hyperrĂ©flexie qui se manifeste par des contractions rĂ©flexes non-inhibĂ©es. Ces contractions peuvent ĂȘtre accompagnĂ©es d’une augmentation de l’activitĂ© du sphincter externe. Par consĂ©quent, cela mĂšne Ă  un Ă©tat d’obstruction fonctionnelle de la vessie, qui induit une forte pression intravĂ©sicale Ă  chacune des contractions rĂ©flexes et qui peut potentiellement endommager le haut appareil urinaire. Dans ce contexte, la neurostimulation est l'une des techniques les plus prometteuses pour la rĂ©habilitation de la vessie chez les patients ayant subi une lĂ©sion de la moelle Ă©piniĂšre. Le seul neurostimulateur implantable commercialisĂ©, ciblant l'amĂ©lioration de la miction et ayant obtenu des rĂ©sultats satisfaisants, nĂ©cessite une rhizotomie (section de certains nerfs) afin de rĂ©duire la dyssynergie entre la vessie et le sphincter. Cependant, la rhizotomie est irrĂ©versible et peut abolir les rĂ©flexes sexuels, de dĂ©fĂ©cation ainsi que les sensations sacrales si encore prĂ©sents dans le cas de lĂ©sions incomplĂštes. Afin d'Ă©viter la rhizotomie, nous proposons une nouvelle stratĂ©gie de stimulation multi-site appliquĂ©e aux racines sacrĂ©es, et basĂ©e sur le blocage de la conduction des nerfs Ă  l'aide d'une stimulation Ă  haute frĂ©quence comme alternative Ă  la rhizotomie. Cette approche permettrait une meilleure miction en augmentant sĂ©lectivement la contraction de la vessie et en diminuant la dyssynergie. Huit expĂ©riences en phase aigĂŒe ont Ă©tĂ©s menĂ©es sur des chiens pour vĂ©rifier la rĂ©ponse de la vessie et du sphincter urĂ©tral externe Ă  la stratĂ©gie de stimulation proposĂ©e. Le blocage Ă  haute-frĂ©quence (1 kHz) combinĂ© Ă  la stimulation basse-frĂ©quence (30 Hz), a augmentĂ© la diffĂ©rence de pression intra-vĂ©sicale/intra-urĂ©trale moyenne jusqu'Ă  53 cmH2O et a rĂ©duit la pression intra-urĂ©trale moyenne jusqu'Ă  hauteur de 86 % relativement au niveau de rĂ©fĂ©rence. Dans l’objectif de tester la stratĂ©gie de neurostimulation proposĂ©e avec des expĂ©riences animales en phase chronique, un dispositif de neurostimulation implantable est requis. Un prototype discret implĂ©mentant cette stratĂ©gie de stimulation a Ă©tĂ© rĂ©alisĂ© en utilisant uniquement des composants discrets disponibles commercialement. Ce prototype est capable de gĂ©nĂ©rer des impulsions Ă  une frĂ©quence aussi basse que 18 Hz tout en gĂ©nĂ©rant simultanĂ©ment une forme d’onde alternative Ă  une frĂ©quence aussi haute que 8.6 kHz, et ce sur de multiples canaux. Lorsque tous les Ă©tages de stimulation et leurs diffĂ©rentes sorties sont activĂ©s avec des frĂ©quences d’impulsions (2 mA, 217 ÎŒs) et de sinusoĂŻdes de 30 Hz et 1 kHz respectivement, la consommation de puissance totale est autour de 4.5 mA (rms). Avec 50 mW de puissance inductive disponible par exemple et 4.5 mA de consommation de courant, le rĂ©gulateur haute-tension peut ĂȘtre rĂ©glĂ© Ă  10 V permettant ainsi une stimulation de 2 mA avec une impĂ©dance nerf-Ă©lectrode de 4.4 kΩ. Le nombre effectif de sorties activĂ©es et le maximum rĂ©alisable des paramĂštres de stimulation sont limitĂ©s par l’énergie disponible fournie par le lien inductif et l’impĂ©dance des interfaces nerf-Ă©lectrode. Cependant, une plus grande intĂ©gration du neurostimulateur devient de plus en plus nĂ©cessaire Ă  des fins de miniaturisation, de rĂ©duction de consommation de puissance, et d’augmentation du nombre de canaux de stimulation. Comme premiĂšre Ă©tape vers une intĂ©gration totale, nous prĂ©sentons la conception d’un neurostimulateur hautement intĂ©grĂ© et qui peut ĂȘtre assemblĂ© sur un circuit imprimĂ© de 21 mm de diamĂštre. Le prototype est basĂ© sur trois circuits intĂ©grĂ©s, dĂ©diĂ©s et fabriquĂ©s en technologie CMOS haute-tension, ainsi qu’un FPGA miniature Ă  faible puissance et disponible commercialement. En utilisant une approche basĂ©e sur un abaisseur de tension, oĂč la tension induite est laissĂ©e libre jusqu’à 20 V, l’étage d’entrĂ©e de rĂ©cupĂ©ration de puissance inductive et de donnĂ©es est totalement intĂ©grĂ©.----------ABSTRACT Spinal cord injury (SCI) is a devastating condition medically and socially. For the population of USA only, the incidence is around 10 000 new cases per year. SCI leads to different degrees of dysfunction of the lower urinary tract due to a large variety of possible lesions. With a complete lesion, there is a complete loss of sensory and motor control below the level of lesion. An incomplete lesion implies that some sensory and/or motor activity is still present. Most patients with suprasacral SCI suffer from detrusor over-activity (DO) and detrusor sphincter dyssynergia (DSD). DSD leads to high intravesical pressure, high residual urine, urinary tract infection, and deterioration of the upper urinary tract. In this context, neurostimulation is one of the most promising techniques for bladder rehabilitation in SCI patients. The only commercialized implantable neurostimulator aiming for improved micturition and having obtained satisfactory results requires rhizotomy to reduce DSD. However, rhizotomy is irreversible and may abolish sexual and defecation reflexes as well as sacral sensations, if still present in case of incomplete SCI. In order to avoid rhizotomy, we propose a new multisite stimulation strategy applied to sacral roots, and based on nerve conduction blockade using high-frequency stimulation as an alternative to rhizotomy. This approach would allow a better micturition by increasing bladder contraction selectively and decreasing dyssynergia. Eight acute dog experiments were carried out to verify the bladder and the external urethral sphincter responses to the proposed stimulation strategy. High-frequency blockade (1 kHz) combined with low-frequency stimulation (30 Hz) increased the average intravesical-intraurethral pressure difference up to 53 cmH2O and reduced the average intraurethral pressure with respect to baseline by up to 86 %. To test the proposed neurostimulation strategy during chronic animal experiments, an implantable neurostimulateur is required. A discrete prototype implementing the proposed stimulation strategy has been designed using commercially available discrete components. This prototype is capable of generating a low frequency pulse waveform as low as 18 Hz with a simultaneous high frequency alternating waveform as high as 8.6 kHz, and that over different and multiple channels

    A Suprachoroidal Electrical Retinal Stimulator Design for Long-Term Animal Experiments and In Vivo Assessment of Its Feasibility and Biocompatibility in Rabbits

    Get PDF
    This article reports on a retinal stimulation system for long-term use in animal electrical stimulation experiments. The presented system consisted of an implantable stimulator which provided continuous electrical stimulation, and an external component which provided preset stimulation patterns and power to the implanted stimulator via a paired radio frequency (RF) coil. A rechargeable internal battery and a parameter memory component were introduced to the implanted retinal stimulator. As a result, the external component was not necessary during the stimulation mode. The inductive coil pair was used to pass the parameter data and to recharge the battery. A switch circuit was used to separate the stimulation mode from the battery recharging mode. The implantable stimulator was implemented with IC chips and the electronics, except for the stimulation electrodes, were hermetically packaged in a biocompatible metal case. A polyimide-based gold electrode array was used. Surgical implantation into rabbits was performed to verify the functionality and safety of this newly designed system. The electrodes were implanted in the suprachoroidal space. Evoked cortical potentials were recorded during electrical stimulation of the retina. Long-term follow-up using OCT showed no chorioretinal abnormality after implantation of the electrodes

    Electrical stimulation in the treatment of bladder dysfunction: Technology update

    Get PDF
    The urinary bladder has two functions: urine storage and voiding. Clinically, two major categories of lower urinary tract symptoms can be defined: storage symptoms such as incontinence and urgency, and voiding symptoms such as feeling of incomplete bladder emptying and slow urinary stream. Urgency to void with or without incontinence is called overactive bladder (OAB). Slow urinary stream, hesitancy, and straining to void with the feeling of incomplete bladder emptying are often called underactive bladder (UAB). The underlying causes of OAB or UAB can be either non-neurogenic (also referred to as idiopathic) and neurogenic, for example due to spinal cord injury or multiple sclerosis. OAB and UAB can be treated conservatively by lifestyle intervention or medication. In the case that conservative treatment does not provide sufficient benefit, electrical stimulation can be used. Sacral neurostimulation or neuromodulation (SNM) is offered as a third-line therapy to patients with non-neurogenic OAB or UAB. In SNM, the third or fourth sacral nerve root is stimulated and after a test period, a neuromodulator is implanted in the buttock. Until recently only a non-rechargeable neuromodulator was approved for clinical use. However, nowadays, a rechargeable sacral neuromodulator is also on the market, with similar safety and effectiveness to the non-rechargeable SNM system. The rechargeable device was approved for full body 1.5T and 3T MRI in Europe in February 2019. Regarding neurogenic lower urinary tract dysfunction, electrical stimulation only seems to benefit a selected group of patients

    Beyond Tissue replacement: The Emerging role of smart implants in healthcare

    Get PDF
    Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices

    A Versatile Hermetically Sealed Microelectronic Implant for Peripheral Nerve Stimulation Applications

    Get PDF
    This article presents a versatile neurostimulation platform featuring a fully implantable multi-channel neural stimulator for chronic experimental studies with freely moving large animal models involving peripheral nerves. The implant is hermetically sealed in a ceramic enclosure and encapsulated in medical grade silicone rubber, and then underwent active tests at accelerated aging conditions at 100°C for 15 consecutive days. The stimulator microelectronics are implemented in a 0.6-Όm CMOS technology, with a crosstalk reduction scheme to minimize cross-channel interference, and high-speed power and data telemetry for battery-less operation. A wearable transmitter equipped with a Bluetooth Low Energy radio link, and a custom graphical user interface provide real-time, remotely controlled stimulation. Three parallel stimulators provide independent stimulation on three channels, where each stimulator supports six stimulating sites and two return sites through multiplexing, hence the implant can facilitate stimulation at up to 36 different electrode pairs. The design of the electronics, method of hermetic packaging and electrical performance as well as in vitro testing with electrodes in saline are presented

    Innovative neurophysiological mechanisms and technologies for VNS in refractory epilepsy

    Get PDF
    • 

    corecore