2,977 research outputs found

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique

    Novel techniques for the design and practical realization of switched-capacitor circuits in deep-submicron CMOS technologies

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaSwitches presenting high linearity are more and more required in switched-capacitor circuits,namely in 12 to 16 bits resolution analog-to-digital converters. The CMOS technology evolves continuously towards lower supply voltages and, simultaneously, new design techniques are necessary to fulfill the realization of switches exhibiting a high dynamic range and a distortion compatible with referred resolutions. Moreover, with the continuously downing of the sizes, the physic constraints of the technology must be considered to avoid the excessive stress of the devices when relatively high voltages are applied to the gates. New switch-linearization techniques, with high reliability, must be necessarily developed and demonstrated in CMOS integrated circuits. Also, the research of new structures of circuits with switched-capacitor is permanent. Simplified and efficient structures are mandatory, adequate to the new demands emerging from the proliferation of portable equipments, necessarily with low energy consumption while assuring high performance and multiple functions. The work reported in this Thesis comprises these two areas. The behavior of the switches under these new constraints is analyzed, being a new and original solution proposed, in order to maintain the performance. Also, proposals for the application of simpler clock and control schemes are presented, and for the use of open-loop structures and amplifiers with localfeedback. The results, obtained in laboratory or by simulation, assess the feasibility of the presented proposals

    Investigation of Novel Displacement-Controlled Hydraulic Architectures for Railway Construction and Maintenance Machines

    Get PDF
    This dissertation aims at showing how to transform hydraulic systems of railway multi-actuator machinery characterized by inefficient state-of-the-art systems into the 21st Century. Designing machines that are highly efficient, productive, reliable, and cost affordable represents the target of this research. In this regard, migrating from valve-controlled architectures to displacement-controlled layouts is the proper answer. Displacement-controlled systems remove the losses generated by flow throttling typical of conventional circuits, allow an easy implementation of energy recovery (e.g. during regenerative braking), and create the possibility for the use of hybrid systems capable of maximizing the downsizing of the combustion engine. One portion of the dissertation focuses on efficient propulsion systems suitable for railway construction and maintenance machines. Two non-hybrid architectures are first proposed, i.e. a novel layout grounded on two independent hydrostatic transmissions (HSTs) and two secondary controlled hydraulic motors (SCHMs) connected in parallel. Three suitable control strategies are developed according to the specific requirements for railway machines and dedicated controllers are implemented. Detailed analyses are conducted via high-fidelity virtual simulations involving accurate modeling of the rail/wheel interface. The performance of the propulsion systems is proven by acceptable velocity tracking, accurate stopping position, achieving regenerative braking, and the expected behavior of the slip coefficients on both axles. Energy efficiency is the main emphasis during representative working cycles, which shows that the independent HSTs are more efficient. They consume 6.6% less energy than the SCHMs working with variable-pressure and 12.8% less energy than the SCHMs controlled with constant-pressure. Additionally, two alternative hybrid propulsion systems are proposed and investigated. These architectures enable a 35% reduction of the baseline machine’s rated engine power without modifying the working hydraulics. Concerning the working hydraulics, the focus is to extend displacement-controlled technology to specific functions on railway construction and maintenance machines. Two specific examples of complete hydraulic circuits for the next generation tamper-liners are proposed. In particular, an innovative approach used to drive displacement-controlled dual function squeeze actuators is presented, implemented, and experimentally validated. This approach combines two functions into a unique actuator, namely squeezing the ballast and vibrating the tamping tools of the work-heads. This results in many advantages, such as variable amplitude and variable frequency of the tamping tools’ vibration, improved reliability of the tamping process, and energy efficient actuation. A motion of the squeeze actuator characterized by a vibration up to 45 Hz, i.e. the frequency used in state-of-the-art systems, is experimentally confirmed. In conclusion, this dissertation demonstrates that displacement-controlled actuation represents the correct solution for next-generation railway construction and maintenance machines

    Hardware design of a portable medical device to measure the quadriceps muscle group after a total knee arthroplasty by EMG, LBIA and clinical score methods

    Get PDF
    El propòsit d'aquest projecte és el disseny del hardware d'un dispositiu mèdic portàtil per a mesurar senyals d'electromiografia (EMG) i bioimpedància localitzada (LBIA), que s'utilitzarà per avaluar la progressió de dues pròtesis de genoll (Medial-Pivot i Ultra- Congruent) en pacients operats d'una artroplàstia total de genoll per a l'hospital Germans Trias i Pujol de Badalona. Per això, s'ha realitzat un estudi complet sobre els senyals d'EMG i LBIA, per tal de definir les característiques necessàries de l'equip mèdic i poder optimitzar el disseny electrònic. Per l'adquisició de senyals EMG, s'ha dissenyat i simulat un sistema compost per diferents fases, que treballen independentment per adquirir, amplificar, filtrar i adaptar el senyal EMG pel seu futur processament digital. D'altra banda, per obtenir valors de la bioimpedància localitzada dels diferents músculs que conformen el quàdriceps, s'ha dissenyat un sistema compost per dos grans blocs; el primer bloc és l'etapa d'injecció, on es genera i s'injecta un senyal feble de corrent altern a la zona a mesurar, mentre que el segon bloc, és l'etapa d'adquisició de senyals. Aquest últim s'encarrega d'adquirir la diferència de voltatge produïda per la injecció de corrent al múscul (anteriorment mencionat) per després calcular la bioimpedància a partir de la llei d'ohm. Tots els senyals són digitalitzats mitjançant el microcontrolador STM32F407VG, que s'encarregarà de processar i aconseguir les dades claus per determinar quina de les deus pròtesis desenvolupa una millor funció mecànica i una millor adaptació biològica. És important remarcar que tot el disseny, sigui per a EMG o LBIA s'ha dut a terme de manera discreta sense fer servir Front-Ends comercials o integrats complexos més que l'amplificador d'instrumentació o ADC. En addició, el present treball inclou una primera estimació dels costos de producció i fabricació per a una sola unitat, càlculs de consums i funcionament (sorolls, CMRR del sistema i amplada de banda) i una simulació completa d'EMG i LBIA per observar com funciona i es du a terme cada etapa del circuit. Finalment, en tractar-se d'un equip mèdic, també s'ha revisat la normativa aplicable i se n'ha analitzat l'impacte ambiental, s'ha proposat i definit diferents punts per a futurs treballs, com podria ser la validació i testatge de l'equip, càlculs més aproximats de consums i perfilar la bill of materials (BOM) per a grans demandes de components.The purpose of this project is the hardware design of a portable medical device to measure electromyography (EMG) and localized bioimpedance (LBIA) signals, which will be used to evaluate the adaptability and progression of two knee prostheses (medial-pivot and ultra-congruent) in patients undergoing total knee arthroplasty at the Germans Trias i Pujol Hospital in Badalona. For this, the present work undercovers the relevant properties of the EMG and LBIA signals in order to define the characteristics of the medical equipment and thus optimize its electronic design. For the EMG measurements, a system made up of different stages has been designed and simulated. These phases work independently to acquire, amplify, filter, and adapt the EMG signal for its further digital processing. On the other hand, to obtain the bioimpedance values of different quadriceps muscles, a system composed of two large blocks has been designed; the first is the injection block, where a weak alternating current signal is generated and injected into the area to be measured, while the second block is the signal acquisition stage. The purpose of the latter is to acquire the voltage difference produced by the injection of current (mentioned above) and then obtain the bioimpedance from Ohm's law. All the signals are digitized from the STM32F407VG microcontroller, which will be in charge of processing and obtaining the key data to determine which of the two prostheses performs a better mechanical function and biological adaptation. It is important to note that the entire design, whether for EMG or LBIA, has been developed discreetly without using commercial Front-Ends or complex ICs other than the instrumentation amplifier or ADC. In addition, the thesis includes a first estimation of the production and manufacturing costs for a single unit, calculations of consumption and work operation (noise, CMRR of the system and bandwidth) and a complete simulation of EMG and LBIA to observe how it works on each stage for both circuits. Finally, as it is a medical device, the applicable regulations have also been reviewed and its environmental impact has been analysed. Additionally, different points have been proposed and defined for future work, such as the construction of the PCB and its respective validation, improving both the consumption calculations and the list of materials (BOM) for large component demands.El propósito de este proyecto es el diseño del Hardware de un dispositivo médico portátil para mediciones de electromiografía (EMG) y bioimpedancia localizada (LBIA), que se utilizará para estudiar la evolución de la adaptabilidad y funcionamiento de dos prótesis de rodilla (medial-pívot y ultracongruente) en pacientes operados de artroplastia total de rodilla en el Hospital Germans Trias i Pujol de Badalona. Para ello, se ha realizado un estudio exhaustivo sobre las propiedades de las señales de EMG y LBIA con la finalidad de definir las características del equipo médico y de esta forma, optimizar el diseño electrónico del mismo. Para la lectura de mediciones EMG, se ha diseñado y simulado un sistema constituido por distintas etapas, que trabajan independientemente para adquirir, amplificar, filtrar, y adaptarla señal EMG para su posterior procesado digital. Por otro lado, para obtener los valores de bioimpedancia de distintos músculos del cuádriceps, se ha diseñado un sistema compuesto por dos grandes bloques; el primero es el bloque de inyección, donde se genera y se inyecta una señal débil de corriente alterna en la zona a medir, mientras que el segundo bloque es la etapa de adquisición de señales. Esta última tiene como finalidad adquirir la diferencia de voltaje producido por la inyección de corriente (anteriormente mencionada) para después obtener la bioimpedancia a partir de la ley de ohm. Todas las señales son digitalizadas a partir del microcontrolador STM32F407VG, que se encargará de procesar y obtener los datos claves para determinar cuál de las dos prótesis desempeña una mejor función mecánica y adaptación biológica. Es importante remarcar que todo el diseño, ya sea para EMG o LBIA, se ha desarrollado de manera discreta sin usar Front-Ends comerciales o integrados complejos más que el amplificador de instrumentación o ADC. En adición, la tesis incluye una primera estimación de los costes de producción y fabricación para una sola unidad, cálculos de consumos y funcionamiento (ruidos, CMRR del sistema y ancho de banda) y una simulación completa de EMG y LBIA para observar cómo funciona y se desarrolla cada etapa de los distintos circuitos. Finalmente, al tratarse de un equipo médico, también se ha revisado la normativa aplicable y se ha analizado el impacto ambiental del mismo. Por último, se han propuesto y definido distintos puntos para futuros trabajos, como es la construcción de la PCB y su respectiva validación, realizar cálculos más aproximados de consumos y perfilar la lista de materiales (BOM) para grandes demandas de componentes

    Low power/low voltage techniques for analog CMOS circuits

    Get PDF

    Design and Implementation of an Integrated Biosensor Platform for Lab-on-a-Chip Diabetic Care Systems

    Get PDF
    Recent advances in semiconductor processing and microfabrication techniques allow the implementation of complex microstructures in a single platform or lab on chip. These devices require fewer samples, allow lightweight implementation, and offer high sensitivities. However, the use of these microstructures place stringent performance constraints on sensor readout architecture. In glucose sensing for diabetic patients, portable handheld devices are common, and have demonstrated significant performance improvement over the last decade. Fluctuations in glucose levels with patient physiological conditions are highly unpredictable and glucose monitors often require complex control algorithms along with dynamic physiological data. Recent research has focused on long term implantation of the sensor system. Glucose sensors combined with sensor readout, insulin bolus control algorithm, and insulin infusion devices can function as an artificial pancreas. However, challenges remain in integrated glucose sensing which include degradation of electrode sensitivity at the microscale, integration of the electrodes with low power low noise readout electronics, and correlation of fluctuations in glucose levels with other physiological data. This work develops 1) a low power and compact glucose monitoring system and 2) a low power single chip solution for real time physiological feedback in an artificial pancreas system. First, glucose sensor sensitivity and robustness is improved using robust vertically aligned carbon nanofiber (VACNF) microelectrodes. Electrode architectures have been optimized, modeled and verified with physiologically relevant glucose levels. Second, novel potentiostat topologies based on a difference-differential common gate input pair transimpedance amplifier and low-power voltage controlled oscillators have been proposed, mathematically modeled and implemented in a 0.18μm [micrometer] complementary metal oxide semiconductor (CMOS) process. Potentiostat circuits are widely used as the readout electronics in enzymatic electrochemical sensors. The integrated potentiostat with VACNF microelectrodes achieves competitive performance at low power and requires reduced chip space. Third, a low power instrumentation solution consisting of a programmable charge amplifier, an analog feature extractor and a control algorithm has been proposed and implemented to enable continuous physiological data extraction of bowel sounds using a single chip. Abdominal sounds can aid correlation of meal events to glucose levels. The developed integrated sensing systems represent a significant advancement in artificial pancreas systems
    corecore