246 research outputs found

    A Fully Convolutional Deep Auditory Model for Musical Chord Recognition

    Full text link
    Chord recognition systems depend on robust feature extraction pipelines. While these pipelines are traditionally hand-crafted, recent advances in end-to-end machine learning have begun to inspire researchers to explore data-driven methods for such tasks. In this paper, we present a chord recognition system that uses a fully convolutional deep auditory model for feature extraction. The extracted features are processed by a Conditional Random Field that decodes the final chord sequence. Both processing stages are trained automatically and do not require expert knowledge for optimising parameters. We show that the learned auditory system extracts musically interpretable features, and that the proposed chord recognition system achieves results on par or better than state-of-the-art algorithms.Comment: In Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietro sul Mare, Ital

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Automatic Chord Estimation Based on a Frame-wise Convolutional Recurrent Neural Network with Non-Aligned Annotations

    Get PDF
    International audienceThis paper describes a weakly-supervised approach to Automatic Chord Estimation (ACE) task that aims to estimate a sequence of chords from a given music audio signal at the frame level, under a realistic condition that only non-aligned chord annotations are available. In conventional studies assuming the availability of time-aligned chord annotations, Deep Neural Networks (DNNs) that learn frame-wise mappings from acoustic features to chords have attained excellent performance. The major drawback of such frame-wise models is that they cannot be trained without the time alignment information. Inspired by a common approach in automatic speech recognition based on non-aligned speech transcriptions, we propose a two-step method that trains a Hidden Markov Model (HMM) for the forced alignment between chord annotations and music signals, and then trains a powerful frame-wise DNN model for ACE. Experimental results show that although the frame-level accuracy of the forced alignment was just under 90%, the performance of the proposed method was degraded only slightly from that of the DNN model trained by using the ground-truth alignment data. Furthermore, using a sufficient amount of easily collected non-aligned data, the proposed method is able to reach or even outperform the conventional methods based on ground-truth time-aligned annotations
    corecore