81 research outputs found

    Development of Novel Diagnostic Tools for Dry Eye Disease using Infrared Meibography and In Vivo Confocal Microscopy

    Get PDF
    Dry eye disease (DED) is a multifactorial disease of the ocular surface where tear film instability, hyperosmolarity, neurosensory abnormalities, meibomian gland dysfunction, ocular surface inflammation and damage play a dedicated etiological role. Estimated 5 to 50% of the world population in different demographic locations, age and gender are currently affected by DED. The risk and occurrence of DED increases at a significant rate with age, which makes dry eye a major growing public health issue. DED not only impacts the patient’s quality of vision and life, but also creates a socio-economic burden of millions of euros per year. DED diagnosis and monitoring can be a challenging task in clinical practice due to the multifactorial nature and the poor correlation between signs and symptoms. Key clinical diagnostic tests and techniques for DED diagnosis include tearfilm break up time, tear secretion – Schirmer’s test, ocular surface staining, measurement of osmolarity, conjunctival impression cytology. However, these clinical diagnostic techniques are subjective, selective, require contact, and are unpleasant for the patient’s eye. Currently, new advances in different state-of-the-art imaging modalities provide non-invasive, non- or semi-contact, and objective parameters that enable objective evaluation of DED diagnosis. Among the different and constantly evolving imaging modalities, some techniques are developed to assess morphology and function of meibomian glands, and microanatomy and alteration of the different ocular surface tissues such as corneal nerves, immune cells, microneuromas, and conjunctival blood vessels. These clinical parameters cannot be measured by conventional clinical assessment alone. The combination of these imaging modalities with clinical feedback provides unparalleled quantification information of the dynamic properties and functional parameters of different ocular surface tissues. Moreover, image-based biomarkers provide objective, specific, and non / marginal contact diagnosis, which is faster and less unpleasant to the patient’s eye than the clinical assessment techniques. The aim of this PhD thesis was to introduced deep learning-based novel computational methods to segment and quantify meibomian glands (both upper and lower eyelids), corneal nerves, and dendritic cells. The developed methods used raw images, directly export from the clinical devices without any image pre-processing to generate segmentation masks. Afterward, it provides fully automatic morphometric quantification parameters for more reliable disease diagnosis. Noteworthily, the developed methods provide complete segmentation and quantification information for faster disease characterization. Thus, the developed methods are the first methods (especially for meibomian gland and dendritic cells) to provide complete morphometric analysis. Taken together, we have developed deep learning based automatic system to segment and quantify different ocular surface tissues related to DED namely, meibomian gland, corneal nerves, and dendritic cells to provide reliable and faster disease characterization. The developed system overcomes the current limitations of subjective image analysis and enables precise, accurate, reliable, and reproducible ocular surface tissue analysis. These systems have the potential to make an impact clinically and in the research environment by specifying faster disease diagnosis, facilitating new drug development, and standardizing clinical trials. Moreover, it will allow both researcher and clinicians to analyze meibomian glands, corneal nerves, and dendritic cells more reliably while reducing the time needed to analyze patient images significantly. Finally, the methods developed in this research significantly increase the efficiency of evaluating clinical images, thereby supporting and potentially improving diagnosis and treatment of ocular surface disease

    A fully automatic nerve segmentation and morphometric parameter quantification system for early diagnosis of diabetic neuropathy in corneal images

    Get PDF
    Diabetic Peripheral Neuropathy (DPN) is one of the most common types of diabetes that can affect the cornea. An accurate analysis of the nerve structures can assist the early diagnosis of this disease. This paper proposes a robust, fast and fully automatic nerve segmentation and morphometric parameter quantification system for corneal confocal microscope images. The segmentation part consists of three main steps. First, a preprocessing step is applied to enhance the visibility of the nerves and remove noise using anisotropic diffusion filtering, specifically a Coherence filter followed by Gaussian filtering. Second, morphological operations are applied to remove unwanted objects in the input image such as epithelial cells and small nerve segments. Finally, an edge detection step is applied to detect all the nerves in the input image. In this step, an efficient algorithm for connecting discontinuous nerves is proposed. In the morphometric parameters quantification part, a number of features are extracted, including thickness, tortuosity and length of nerve, which may be used for the early diagnosis of diabetic polyneuropathy and when planning Laser-Assisted in situ Keratomileusis (LASIK) or Photorefractive keratectomy (PRK). The performance of the proposed segmentation system is evaluated against manually traced ground-truth images based on a database consisting of 498 corneal sub-basal nerve images (238 are normal and 260 are abnormal). In addition, the robustness and efficiency of the proposed system in extracting morphometric features with clinical utility was evaluated in 919 images taken from healthy subjects and diabetic patients with and without neuropathy. We demonstrate rapid (13 seconds/image), robust and effective automated corneal nerve quantification. The proposed system will be deployed as a useful clinical tool to support the expertise of ophthalmologists and save the clinician time in a busy clinical setting

    Corneal confocal microscopy for diagnosis of diabetic peripheral neuropathy: an analysis of patients with diabetes screened as part of the South Manchester Diabetic Retinopathy Screening Service

    Get PDF
    Background and Aims: Quantitative assessment of small nerve fibre damage is key to the early diagnosis of diabetic peripheral neuropathy (DPN) and assessment of its progression. Corneal confocal microscopy (CCM) is a non-invasive, in-vivo diagnostic technique that provides an accurate surrogate biomarker for small fibre neuropathy. Its diagnostic efficacy has been previously validated in several studies. This thesis uses CCM images obtained, for the first time, in a large cohort of patients whose CCM examinations were undertaken during retinopathy screening in primary care. The following were the primary aims of the study: 1. To determine the prevalence of diabetic peripheral neuropathy, as defined by CCM parameters in a cohort of people with diabetes 2.To assess whether abnormalities in corneal nerve fibre morphology are present during the first two years following diabetes diagnosis. 3. To assess whether abnormalities in corneal nerve morphology are present prior to any retinopathy, defined as grade 1 or more. 4. To assess whether abnormalities in corneal nerve morphology are present prior to clinical evidence of diabetic neuropathy, as defined by diabetic neuropathic symptom (DNS) scoring of 1 or more The hypotheses for these main aims were that firstly, the prevalence of diabetic peripheral neuropathy, defined using CCM parameters would be lower in this population in comparison to previous CCM studies using patients under the hospital eye service to determine prevalence of DPN. There will be evidence of abnormalities in corneal nerve fibre morphology in some, but not all, patients with diabetic disease duration of less than or equal to 2 years, patients with retinopathy and maculopathy grade 0 and patients with a DNS score of 0. Methods: In this retrospective, primary care, cross-sectional study, 427 patients with diabetes (18 T1DM, 407 T2DM, 2 unknown) and 40 healthy controls underwent quantification of corneal nerve parameters using both automated and semi-automated analysis software. Clinical levels of neuropathy were assessed via diabetic neuropathy symptom score (DNS). Diabetic Retinopathy (DR) was graded using the Early Treatment Diabetic Retinopathy Study (ETDRS) grading scale. Results: Patients with diabetes demonstrated significant differences in all nerve parameters in comparison to healthy control subjects (p0.05). There was no significant difference in any CCM parameters between white and black patients with diabetes (p>0.05). Automated software showed poor agreement with semi-automated results, with a general underestimation for CNFD, CNFL and CNBD. Conclusion: In patients attending primary care screening, CCM in a sensitive biomarker for DPN. Semi-automated CCM quantification reliably detected corneal nerve abnormalities soon after diagnosis of diabetes. Changes in corneal nerve morphology were present prior to any neuropathy symptoms or retinopathy. CCM measured using automatic software requires development to improve agreement with semi-automated analysis

    DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity

    Get PDF
    Accurate estimation and quantification of the corneal nerve fiber tortuosity in corneal confocal microscopy (CCM) is of great importance for disease understanding and clinical decision-making. However, the grading of corneal nerve tortuosity remains a great challenge due to the lack of agreements on the definition and quantification of tortuosity. In this paper, we propose a fully automated deep learning method that performs image-level tortuosity grading of corneal nerves, which is based on CCM images and segmented corneal nerves to further improve the grading accuracy with interpretability principles. The proposed method consists of two stages: 1) A pre-trained feature extraction backbone over ImageNet is fine-tuned with a proposed novel bilinear attention (BA) module for the prediction of the regions of interest (ROIs) and coarse grading of the image. The BA module enhances the ability of the network to model long-range dependencies and global contexts of nerve fibers by capturing second-order statistics of high-level features. 2) An auxiliary tortuosity grading network (AuxNet) is proposed to obtain an auxiliary grading over the identified ROIs, enabling the coarse and additional gradings to be finally fused together for more accurate final results. The experimental results show that our method surpasses existing methods in tortuosity grading, and achieves an overall accuracy of 85.64% in four-level classification. We also validate it over a clinical dataset, and the statistical analysis demonstrates a significant difference of tortuosity levels between healthy control and diabetes group. We have released a dataset with 1500 CCM images and their manual annotations of four tortuosity levels for public access. The code is available at: https://github.com/iMED-Lab/TortuosityGrading

    Artificial Intelligence and Corneal Confocal Microscopy: The Start of a Beautiful Relationship.

    Get PDF
    Corneal confocal microscopy (CCM) is a rapid non-invasive in vivo ophthalmic imaging technique that images the cornea. Historically, it was utilised in the diagnosis and clinical management of corneal epithelial and stromal disorders. However, over the past 20 years, CCM has been increasingly used to image sub-basal small nerve fibres in a variety of peripheral neuropathies and central neurodegenerative diseases. CCM has been used to identify subclinical nerve damage and to predict the development of diabetic peripheral neuropathy (DPN). The complex structure of the corneal sub-basal nerve plexus can be readily analysed through nerve segmentation with manual or automated quantification of parameters such as corneal nerve fibre length (CNFL), nerve fibre density (CNFD), and nerve branch density (CNBD). Large quantities of 2D corneal nerve images lend themselves to the application of artificial intelligence (AI)-based deep learning algorithms (DLA). Indeed, DLA have demonstrated performance comparable to manual but superior to automated quantification of corneal nerve morphology. Recently, our end-to-end classification with a 3 class AI model demonstrated high sensitivity and specificity in differentiating healthy volunteers from people with and without peripheral neuropathy. We believe there is significant scope and need to apply AI to help differentiate between peripheral neuropathies and also central neurodegenerative disorders. AI has significant potential to enhance the diagnostic and prognostic utility of CCM in the management of both peripheral and central neurodegenerative diseases
    • …
    corecore