5,026 research outputs found

    Structure and consequences of vortex-core states in p-wave superfluids

    Get PDF
    It is now well established that in two-dimensional chiral p-wave paired superfluids, the vortices carry zero-energy modes which obey non-abelian exchange statistics and can potentially be used for topological quantum computation. In such superfluids there may also exist other excitations below the bulk gap inside the cores of vortices. We study the properties of these subgap states, and argue that their presence affects the topological protection of the zero modes. In conventional superconductors where the chemical potential is of the order of the Fermi energy of a non-interacting Fermi gas, there is a large number of subgap states and the mini-gap towards the lowest of these states is a small fraction of the Fermi energy. It is therefore difficult to cool the system to below the mini-gap and at experimentally available temperatures, transitions between the subgap states, including the zero modes, will occur and can alter the quantum states of the zero-modes. We show that compound qubits involving the zero-modes and the parity of the occupation number of the subgap states on each vortex are still well defined. However, practical schemes taking into account all subgap states would nonetheless be difficult to achieve. We propose to avoid this difficulty by working in the regime of small chemical potential mu, near the transition to a strongly paired phase, where the number of subgap states is reduced. We develop the theory to describe this regime of strong pairing interactions and we show how the subgap states are ultimately absorbed into the bulk gap. Since the bulk gap vanishes as mu -> 0 there is an optimum value mu_c which maximises the combined gap. We propose cold atomic gases as candidate systems where the regime of strong interactions can be explored, and explicitly evaluate mu_c in a Feshbach resonant K-40 gas.Comment: 19 pages, 10 figures; v2: main text as published version, additional detail included as appendice

    Hierarchical bounding structures for efficient virial computations: Towards a realistic molecular description of cholesterics

    Full text link
    We detail the application of bounding volume hierarchies to accelerate second-virial evaluations for arbitrary complex particles interacting through hard and soft finite-range potentials. This procedure, based on the construction of neighbour lists through the combined use of recursive atom-decomposition techniques and binary overlap search schemes, is shown to scale sub-logarithmically with particle resolution in the case of molecular systems with high aspect ratios. Its implementation within an efficient numerical and theoretical framework based on classical density functional theory enables us to investigate the cholesteric self-assembly of a wide range of experimentally-relevant particle models. We illustrate the method through the determination of the cholesteric behaviour of hard, structurally-resolved twisted cuboids, and report quantitative evidence of the long-predicted phase handedness inversion with increasing particle thread angles near the phenomenological threshold value of 4545^\circ. Our results further highlight the complex relationship between microscopic structure and helical twisting power in such model systems, which may be attributed to subtle geometric variations of their chiral excluded-volume manifold

    Superfluid analogies of cosmological phenomena

    Full text link
    Superfluid 3He-A gives example of how chirality, Weyl fermions, gauge fields and gravity appear in low energy corner together with corresponding symmetries, including Lorentz symmetry and local SU(N). This supports idea that quantum field theory (Standard Model or GUT) is effective theory describing low-energy phenomena. * Momentum space topology of fermionic vacuum provides topological stability of universality class of systems, where above properties appear. * BCS scheme for 3He-A incorporates both ``relativistic'' infrared regime and ultraviolet ``transplanckian'' range: subtle issues of cut-off in quantum field theory and anomalies can be resolved on physical grounds. This allows to separate ``renormalizable'' terms in action, treated by effective theory, from those obtained only in ``transPlanckian'' physics. * Energy density of superfluid vacuum within effective theory is ~ E_{Planck}^4. Stability analysis of ground state beyond effective theory leads to exact nullification of vacuum energy: equilibrium vacuum is not gravitating. In nonequilibrium, vacuum energy is of order energy density of matter. * 3He-A provides experimental prove for anomalous nucleation of fermionic charge according to Adler-Bell-Jackiw. * Helical instability in 3He-A is described by the same equations as formation of magnetic field by right electrons in Joyce-Shaposhnikov scenario. * Macroscopic parity violating effect and angular momentum paradox are both desribed by axial gravitational Chern-Simons action. * High energy dispersion of quasiparticle spectrum allow to treat problems of vacuum in presence of event horizon, etc.Comment: draft of review for Physics Reports, RevTex file, 113 pages, 26 figures; new sections and references are adde

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Symmetry-break in Voronoi tessellations

    Get PDF
    We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC) crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity. The same applies in 3D, where noise degrades the isoperimetric ratio for perturbed FCC and BCC lattices, whereas the opposite holds for perturbed SCC lattices. This allows for formulating a weaker form of the Kelvin conjecture. By analysing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape heavily fluctuates when noise is introduced in the system. In 2D, the geometrical properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established, which agrees with exact asymptotic results. Anomalous scaling relations are observed between the perimeter and the area in the 2D and between the areas and the volumes of the cells in 3D: except for the hexagonal (2D) and FCC structure (3D), this applies also for infinitesimal noise. In the Poisson-Voronoi limit, the anomalous exponent is about 0.17 in both the 2D and 3D case. A positive anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), in 3D it is shown that the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces
    corecore