17,191 research outputs found

    Anatomical landmark based registration of contrast enhanced T1-weighted MR images

    Get PDF
    In many problems involving multiple image analysis, an im- age registration step is required. One such problem appears in brain tumor imaging, where baseline and follow-up image volumes from a tu- mor patient are often to-be compared. Nature of the registration for a change detection problem in brain tumor growth analysis is usually rigid or affine. Contrast enhanced T1-weighted MR images are widely used in clinical practice for monitoring brain tumors. Over this modality, con- tours of the active tumor cells and whole tumor borders and margins are visually enhanced. In this study, a new technique to register serial contrast enhanced T1 weighted MR images is presented. The proposed fully-automated method is based on five anatomical landmarks: eye balls, nose, confluence of sagittal sinus, and apex of superior sagittal sinus. Af- ter extraction of anatomical landmarks from fixed and moving volumes, an affine transformation is estimated by minimizing the sum of squared distances between the landmark coordinates. Final result is refined with a surface registration, which is based on head masks confined to the sur- face of the scalp, as well as to a plane constructed from three of the extracted features. The overall registration is not intensity based, and it depends only on the invariant structures. Validation studies using both synthetically transformed MRI data, and real MRI scans, which included several markers over the head of the patient were performed. In addition, comparison studies against manual landmarks marked by a radiologist, as well as against the results obtained from a typical mutual information based method were carried out to demonstrate the effectiveness of the proposed method

    Affine Subspace Representation for Feature Description

    Full text link
    This paper proposes a novel Affine Subspace Representation (ASR) descriptor to deal with affine distortions induced by viewpoint changes. Unlike the traditional local descriptors such as SIFT, ASR inherently encodes local information of multi-view patches, making it robust to affine distortions while maintaining a high discriminative ability. To this end, PCA is used to represent affine-warped patches as PCA-patch vectors for its compactness and efficiency. Then according to the subspace assumption, which implies that the PCA-patch vectors of various affine-warped patches of the same keypoint can be represented by a low-dimensional linear subspace, the ASR descriptor is obtained by using a simple subspace-to-point mapping. Such a linear subspace representation could accurately capture the underlying information of a keypoint (local structure) under multiple views without sacrificing its distinctiveness. To accelerate the computation of ASR descriptor, a fast approximate algorithm is proposed by moving the most computational part (ie, warp patch under various affine transformations) to an offline training stage. Experimental results show that ASR is not only better than the state-of-the-art descriptors under various image transformations, but also performs well without a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio

    Low-rank SIFT: An Affine Invariant Feature for Place Recognition

    Full text link
    In this paper, we present a novel affine-invariant feature based on SIFT, leveraging the regular appearance of man-made objects. The feature achieves full affine invariance without needing to simulate over affine parameter space. Low-rank SIFT, as we name the feature, is based on our observation that local tilt, which are caused by changes of camera axis orientation, could be normalized by converting local patches to standard low-rank forms. Rotation, translation and scaling invariance could be achieved in ways similar to SIFT. As an extension of SIFT, our method seeks to add prior to solve the ill-posed affine parameter estimation problem and normalizes them directly, and is applicable to objects with regular structures. Furthermore, owing to recent breakthrough in convex optimization, such parameter could be computed efficiently. We will demonstrate its effectiveness in place recognition as our major application. As extra contributions, we also describe our pipeline of constructing geotagged building database from the ground up, as well as an efficient scheme for automatic feature selection

    Convolutional neural network architecture for geometric matching

    Get PDF
    We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.Comment: In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017
    corecore