10 research outputs found

    Memristor-Based HTM Spatial Pooler with On-Device Learning for Pattern Recognition

    Get PDF
    This article investigates hardware implementation of hierarchical temporal memory (HTM), a brain-inspired machine learning algorithm that mimics the key functions of the neocortex and is applicable to many machine learning tasks. Spatial pooler (SP) is one of the main parts of HTM, designed to learn the spatial information and obtain the sparse distributed representations (SDRs) of input patterns. The other part is temporal memory (TM) which aims to learn the temporal information of inputs. The memristor, which is an appropriate synapse emulator for neuromorphic systems, can be used as the synapse in SP and TM circuits. In this article, a memristor-based SP (MSP) circuit structure is designed to accelerate the execution of the SP algorithm. The presented MSP has properties of modeling both the synaptic permanence and the synaptic connection state within a single synapse, and on-device and parallel learning. Simulation results of statistic metrics and classification tasks on several real-world datasets substantiate the validity of MSP

    Evolving Nano-scale Associative Memories with Memristors

    Get PDF
    Associative Memories (AMs) are essential building blocks for brain-like intelligent computing with applications in artificial vision, speech recognition, artificial intelligence, and robotics. Computations for such applications typically rely on spatial and temporal associations in the input patterns and need to be robust against noise and incomplete patterns. The conventional method for implementing AMs is through Artificial Neural Networks (ANNs). Improving the density of ANN based on conventional circuit elements poses a challenge as devices reach their physical scalability limits. Furthermore, stored information in AMs is vulnerable to destructive input signals. Novel nano-scale components, such as memristors, represent one solution to the density problem. Memristors are non-linear time-dependent circuit elements with an inherently small form factor. However, novel neuromorphic circuits typically use memristors to replace synapses in conventional ANN circuits. This sub-optimal use is primarily because there is no established design methodology to exploit the memristor\u27s non-linear properties in a more encompassing way. The objective of this thesis is to explore denser and more robust AM designs using memristor networks. We hypothesize that such network AMs will be more area-efficient than the traditional ANN designs if we can use the memristor\u27s non-linear property for spatial and time-dependent temporal association. We have built a comprehensive simulation framework that employs Genetic Programming (GP) to evolve AM circuits with memristors. The framework is based on the ParadisEO metaheuristics API and uses ngspice for the circuit evaluation. Our results show that we can evolve efficient memristor-based networks that have the potential to replace conventional ANNs used for AMs. We obtained AMs that a) can learn spatial and temporal correlation in the input patterns; b) optimize the trade-off between the size and the accuracy of the circuits; and c) are robust against destructive noise in the inputs. This robustness was achieved at the expense of additional components in the network. We have shown that automated circuit discovery is a promising tool for memristor-based circuits. Future work will focus on evolving circuits that can be used as a building block for more complicated intelligent computing architectures

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Reliability-aware memory design using advanced reconfiguration mechanisms

    Get PDF
    Fast and Complex Data Memory systems has become a necessity in modern computational units in today's integrated circuits. These memory systems are integrated in form of large embedded memory for data manipulation and storage. This goal has been achieved by the aggressive scaling of transistor dimensions to few nanometer (nm) sizes, though; such a progress comes with a drawback, making it critical to obtain high yields of the chips. Process variability, due to manufacturing imperfections, along with temporal aging, mainly induced by higher electric fields and temperature, are two of the more significant threats that can no longer be ignored in nano-scale embedded memory circuits, and can have high impact on their robustness. Static Random Access Memory (SRAM) is one of the most used embedded memories; generally implemented with the smallest device dimensions and therefore its robustness can be highly important in nanometer domain design paradigm. Their reliable operation needs to be considered and achieved both in cell and also in architectural SRAM array design. Recently, and with the approach to near/below 10nm design generations, novel non-FET devices such as Memristors are attracting high attention as a possible candidate to replace the conventional memory technologies. In spite of their favorable characteristics such as being low power and highly scalable, they also suffer with reliability challenges, such as process variability and endurance degradation, which needs to be mitigated at device and architectural level. This thesis work tackles such problem of reliability concerns in memories by utilizing advanced reconfiguration techniques. In both SRAM arrays and Memristive crossbar memories novel reconfiguration strategies are considered and analyzed, which can extend the memory lifetime. These techniques include monitoring circuits to check the reliability status of the memory units, and architectural implementations in order to reconfigure the memory system to a more reliable configuration before a fail happens.Actualmente, el diseño de sistemas de memoria en circuitos integrados busca continuamente que sean más rápidos y complejos, lo cual se ha vuelto de gran necesidad para las unidades de computación modernas. Estos sistemas de memoria están integrados en forma de memoria embebida para una mejor manipulación de los datos y de su almacenamiento. Dicho objetivo ha sido conseguido gracias al agresivo escalado de las dimensiones del transistor, el cual está llegando a las dimensiones nanométricas. Ahora bien, tal progreso ha conllevado el inconveniente de una menor fiabilidad, dado que ha sido altamente difícil obtener elevados rendimientos de los chips. La variabilidad de proceso - debido a las imperfecciones de fabricación - junto con la degradación de los dispositivos - principalmente inducido por el elevado campo eléctrico y altas temperaturas - son dos de las más relevantes amenazas que no pueden ni deben ser ignoradas por más tiempo en los circuitos embebidos de memoria, echo que puede tener un elevado impacto en su robusteza final. Static Random Access Memory (SRAM) es una de las celdas de memoria más utilizadas en la actualidad. Generalmente, estas celdas son implementadas con las menores dimensiones de dispositivos, lo que conlleva que el estudio de su robusteza es de gran relevancia en el actual paradigma de diseño en el rango nanométrico. La fiabilidad de sus operaciones necesita ser considerada y conseguida tanto a nivel de celda de memoria como en el diseño de arquitecturas complejas basadas en celdas de memoria SRAM. Actualmente, con el diseño de sistemas basados en dispositivos de 10nm, dispositivos nuevos no-FET tales como los memristores están atrayendo una elevada atención como posibles candidatos para reemplazar las actuales tecnologías de memorias convencionales. A pesar de sus características favorables, tales como el bajo consumo como la alta escabilidad, ellos también padecen de relevantes retos de fiabilidad, como son la variabilidad de proceso y la degradación de la resistencia, la cual necesita ser mitigada tanto a nivel de dispositivo como a nivel arquitectural. Con todo esto, esta tesis doctoral afronta tales problemas de fiabilidad en memorias mediante la utilización de técnicas de reconfiguración avanzada. La consideración de nuevas estrategias de reconfiguración han resultado ser validas tanto para las memorias basadas en celdas SRAM como en `memristive crossbar¿, donde se ha observado una mejora significativa del tiempo de vida en ambos casos. Estas técnicas incluyen circuitos de monitorización para comprobar la fiabilidad de las unidades de memoria, y la implementación arquitectural con el objetivo de reconfigurar los sistemas de memoria hacia una configuración mucho más fiables antes de que el fallo suced

    A full-function Pavlov associative memory implementation with memristance changing circuit

    Full text link
    Positive voltages and negative voltages are applied to adjust memristance in most memristive circuits. This paper presents a memristance changing circuit in which memristance is changed only by the positive voltage. A mathematical calculation method is proposed to analyze the memristance change approximately. Furthermore, memristance changing circuits are utilized as synapses to construct a neural network to imitate full-function Pavlov associative memory. Compared to the classical Pavlov associative memory, the full-function Pavlov associative memory contains additional food forgetting and ring forgetting processes. The forgetting processes will be triggered in the condition that either the food or the ring is given to the dog after the learning processes. The learning and forgetting time of the associative memory can be obtained by the proposed mathematical calculation method in advance approximately
    corecore