3,371 research outputs found

    Stereoscopic video quality assessment using binocular energy

    Get PDF
    Stereoscopic imaging is becoming increasingly popular. However, to ensure the best quality of experience, there is a need to develop more robust and accurate objective metrics for stereoscopic content quality assessment. Existing stereoscopic image and video metrics are either extensions of conventional 2D metrics (with added depth or disparity information) or are based on relatively simple perceptual models. Consequently, they tend to lack the accuracy and robustness required for stereoscopic content quality assessment. This paper introduces full-reference stereoscopic image and video quality metrics based on a Human Visual System (HVS) model incorporating important physiological findings on binocular vision. The proposed approach is based on the following three contributions. First, it introduces a novel HVS model extending previous models to include the phenomena of binocular suppression and recurrent excitation. Second, an image quality metric based on the novel HVS model is proposed. Finally, an optimised temporal pooling strategy is introduced to extend the metric to the video domain. Both image and video quality metrics are obtained via a training procedure to establish a relationship between subjective scores and objective measures of the HVS model. The metrics are evaluated using publicly available stereoscopic image/video databases as well as a new stereoscopic video database. An extensive experimental evaluation demonstrates the robustness of the proposed quality metrics. This indicates a considerable improvement with respect to the state-of-the-art with average correlations with subjective scores of 0.86 for the proposed stereoscopic image metric and 0.89 and 0.91 for the proposed stereoscopic video metrics

    An improved model of binocular energy calculation for full-reference stereoscopic image quality assessment

    Get PDF
    With the exponential growth of stereoscopic imaging in various applications, it has become very demanding to have a reliable quality assessment technique to measure the human perception of stereoscopic images. Quality assessment of stereoscopic visual content in the presence of artefacts caused by compression and transmission is a key component of end-to-end 3D media delivery systems. Despite a few recent attempts to develop stereoscopic image/video quality metrics, there is still a lack of a robust stereoscopic image quality metric. Towards addressing this issue, this paper proposes a full reference stereoscopic image quality metric, which mimics the human perception while viewing stereoscopic images. A signal processing model that is consistent with physiological literature is developed in the paper to simulate the behaviour of simple and complex cells of the primary visual cortex in the Human Visual System (HVS). The model is trained with two publicly available stereoscopic image databases to match the perceptual judgement of impaired stereoscopic images. The experimental results demonstrate a significant improvement in prediction performance as compared with several state-of-the-art stereoscopic image quality metrics
    • …
    corecore