169 research outputs found

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Applying Frequency-Domain Equalization to Code-Division Multiple Access and Transform-Domain Communications Systems

    Get PDF
    This research examined the theory and application of using orthogonal frequency division multiplexing (OFDM), or discrete multi-tone (DMT), frequency domain equalization (FEQ) with two communications systems that inherently possess unused carrier frequencies, or null-tones, in their respective transmission frequencies. The fundamental DMT-FEQ property relies on null-tones to equalize a non-ideal channel and mitigate the effects of interchannel interference (ICI), intersymbol interference (ISI), and noise. The two communications systems investigated were a Hadamard encoded code division multiple access (CDMA) communications system with up to 32 synchronous users and a transform domain communications system (TDCS) with only one user. Both communications systems were simulated while operating with real channel data corrupted by noise. Simulation results showed that the Hadamard encoded CDMA system worked well with DMT-FEQ only when the Hadamard code set was used to construct a transmission signal that obeyed DMT-FEQ null-tone conditions in conjunction with a vector estimation method. Simulation results also showed that a TDCS using traditional pseudo-random phase component, and traditional spectral mask with consecutive null-tones, did not work well with DMT-FEQ. Modifications to the TDCS model revealed that a TDCS with a conjugate-symmetric phase component in conjunction with a modified spectral mask with consecutive null-tones and forced null-tones provided acceptable results when equalizing with DMT-FEQ. The DMT-FEQ may be suitable for covert applications, such as TDCS, when modifications to TDCS’ phase component and forced null-tones in its spectral mask are made

    Power pre-emphasis for suppression of FWM in coherent optical OFDM transmission

    Get PDF
    Four-wave-mixing (FWM) due to the fiber nonlinearity is a major limiting factor in coherent optical OFDM transmission. We propose to apply power pre-emphasis, i.e. to allocate the transmitted power nonuniformly among subcarriers in order to suppress the FWM impairment. The proposed technique was numerically investigated for both single channel 15.6 Gbs CO-OFDM transmissions and 7-channel WDM transmissions, showing that up to 1 dB improvement in the system's Qfactor can be achieved without considering sophisticated power loading algorithms developed for wireless communications

    CP-Based SBHT-RLS Algorithms for Tracking Channel Estimates in Multicarrier Modulation Systems

    Get PDF
    • …
    corecore