18,194 research outputs found

    Boundary Absorption Approximation in the Spatial High-Frequency Extrapolation Method for Parametric Room Impulse Response Synthesis

    Get PDF
    The Spatial High-frequency Extrapolation Method (SHEM) extrapolates low-frequency band-limited spatial room impulse responses (SRIRs) to higher frequencies based on a frame-by-frame time/frequency analysis that determines directional reflected components within the SRIR. Such extrapolation can be used to extend finite- difference time domain (FDTD) wave propagation simulations, limited to only relatively low frequencies, to the full audio band. For this bandwidth extrapolation, a boundary absorption weighting function is proposed based on a parametric approximation of the energy decay relief of the SRIR used as the input to the algorithm. Results using examples of both measured and FDTD simulated impulse responses demonstrate that this approach can be applied successfully to a range of acoustic spaces. Objective measures show a close approximation to reverberation time, and acceptable early decay time values. Results are verified through accompanying auralizations that demonstrate the plausibility of this approach when compared to the original reference case

    Simulation of ultrasonic imaging with linear arrays in causal absorptive media

    Get PDF
    Rigorous and efficient numerical methods are presented for simulation of acoustic propagation in a medium where the absorption is described by relaxation processes. It is shown how FFT-based algorithms can be used to simulate ultrasound images in pulse-echo mode. General expressions are obtained for the complex wavenumber in a relaxing medium. A fit to measurements in biological media shows the appropriateness of the model. The wavenumber is applied to three FFT-based extrapolation operators, which are implemented in a weak form to reduce spatial aliasing. The influence of the absorptive medium on the quality of images obtained with a linear array transducer is demonstrated. It is shown that, for moderately absorbing media, the absorption has a large influence on the images, whereas the dispersion has a negligible effect on the images.\ud \u

    Application of multisection recursive convolution in 3D FETD-FABC simulations

    Get PDF
    The multisection recursive convolution (MS-RC) methodology is successfully applied to the finite element time domain floquet absorbing boundary condition modeling of doubly periodic structures. It is shown that late time instability, can be delayed by improving the accuracy of RC and it can be effectively avoided by employing extrapolation

    F-electron spectral function of the Falicov-Kimball model in infinite dimensions: the half-filled case

    Full text link
    The f-electron spectral function of the Falicov-Kimball model is calculated via a Keldysh-based many-body formalism originally developed by Brandt and Urbanek. We provide results for both the Bethe lattice and the hypercubic lattice at half filling. Since the numerical computations are quite sensitive to the discretization along the Kadanoff-Baym contour and to the maximum cutoff in time that is employed, we analyze the accuracy of the results using a variety of different moment sum-rules and spectral formulas. We find that the f-electron spectral function has interesting temperature dependence becoming a narrow single-peaked function for small U and developing a gap, with two broader peaks for large U.Comment: (13 pages, 11 figures, typeset in RevTex 4

    Memory-Based Learning: Using Similarity for Smoothing

    Full text link
    This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations.Comment: 8 pages, uses aclap.sty, To appear in Proc. ACL/EACL 9

    Application of physical parameter identification to finite element models

    Get PDF
    A time domain technique for matching response predictions of a structural dynamic model to test measurements is developed. Significance is attached to prior estimates of physical model parameters and to experimental data. The Bayesian estimation procedure allows confidence levels in predicted physical and modal parameters to be obtained. Structural optimization procedures are employed to minimize an error functional with physical model parameters describing the finite element model as design variables. The number of complete FEM analyses are reduced using approximation concepts, including the recently developed convoluted Taylor series approach. The error function is represented in closed form by converting free decay test data to a time series model using Prony' method. The technique is demonstrated on simulated response of a simple truss structure

    On compressibility assumptions in aeroacoustic integrals: a numerical study with subsonic mixing layers

    Get PDF
    Two assumptions commonly made in predictions based on Lighthill’s formalism are investigated: a constant density in the quadrupole expression, and the evaluation of the source quantity from incompressible simulations. Numerical predictions of the acoustic field are conducted in the case of a subsonic spatially evolving two-dimensional mixing layer at Re = 400. Published results of the direct noise computation (DNC) of the flow are use as reference and input for hybrid approaches before the assumptions on density are progressively introduced. Divergence free velocity fields are obtained from an incompressible simulation of the same flow case, exhibiting the same hydrodynamic field as the DNC. Fair comparisons of the hybrid predictions with the reference acoustic field valid both assumptions in the source region for the tested values of the Mach number. However, in the observer region, the inclusion of flow effects in the Lighthill source term is not preserved, which is illustrated through a comparison with the Kirchhoff wave-extrapolation formalism, and with the use of a convected Green function in the integration process
    corecore