41 research outputs found

    A new finite alphabet based blind channel estimation algorithm for OFDM systems

    Full text link

    Blind M-FSK Modulation in the ISI Channel

    Get PDF
    Channel estimation has received considerable attention over the years for its contribution to more reliable signal decoding. General wireless communication environment would cause multi-path fading for signals that propagate through them. Multi-path fading has two major effects on the system; causing inter symbol interference (ISI) and reshaping signal constellation. Estimating the channel would enable us to combat these two effects. Channel estimation can be done either blindly or with the help of training sequences. In this thesis, we propose a new blind channel estimation technique for M-FSK modulation systems. Our method can decrease the effect of signal reshaping and thus decreasing the probability of error. It also has the ability to track the channel variations in a time-variant environment. In our method, an initial estimation is assumed as the channel impulse response. Utilizing this channel, received signals are demodulated and decoded. Based on output of the demodulator, a new estimation is generated for the channel. Consequently, a new output can be produced by exploiting the new channel estimate. This process can be done iteratively nn times to reach the minimum possible probability of error

    Passive radar on moving platforms exploiting DVB-T transmitters of opportunity

    Get PDF
    The work, effort, and research put into passive radar for stationary receivers have shown significant developments and progress in recent years. The next challenge is mounting a passive radar on moving platforms for the purpose of target detection and ground imaging, e.g. for covert border control. A passive radar on a moving platform has many advantages and offers many benefits, however there is also a considerable drawback that has limited its application so far. Due to the movement the clutter returns are spread in Doppler and may overlap moving targets, which are then difficult to detect. While this problem is common for an active radar as well, with a passive radar a further problem arises: It is impossible to control the exploited time-varying waveform emitted from a telecommunication transmitter. A conventional processing approach is ineffective as the time-varying waveform leads to residuals all over the processed data. Therefore a dedicated clutter cancellation method, e.g. the displaced phase centre antenna (DPCA) approach, does not have the ability to completely remove the clutter, so that target detection is considerably limited. The aim must be therefore to overcome this limitation by exploiting a processing technique, which is able to remove these residuals in order to cope with the clutter returns thus making target detection feasible. The findings of this research and thesis show that a reciprocal filtering based stage is able to provide a time-invariant impulse response similar to the transmissions of an active radar. Due to this benefit it is possible to achieve an overall complete clutter removal together with a dedicated DPCA stage, so that moving target detection is considerably improved, making it possible in the first place. Based on mathematical analysis and on simulations it is proven, that by exploiting this processing in principle an infinite clutter cancellation can be achieved. This result shows that the reciprocal filter is an essential processing stage. Applications on real data acquired from two different measurement campaigns prove these results. By the proposed approach, the limiting factor (i.e. the time-varying waveform) for target detection is negotiated, and in principle any clutter cancellation technique known from active radar can be applied. Therefore this analysis and the results provide a substantial contribution to the passive radar research community and enables it to address the next questions

    Transmitter precoding and code-sharing techniques using block transmission system [TK1-9971].

    Get PDF
    Dewasa ini, perkhidmatan komunikasi bergerak telah meledak dengan begitu pantas sekali dalam masyarakat kita. Kesemua sistem komunikasi selular yang ada kini menggunakan teknologi digital. Recently, mobile communications services are penetrating into our society at an explosive growth rate. All of the current cellular communication systems have adopted digital technology

    Semi Blind Time Domain Equalization for MIMO-OFDM Systems

    Get PDF
    In this thesis, a semi-blind time-domain equalization technique is proposed for general MIMO OFDM systems. The received OFDM symbols are shifted by more than or equal to the cyclic prefix (CP) length, and a blind equalizer is designed to completely suppress both inter-carrier interference (ICI) and inter-symbol interference (ISI) using second-order statistics of the shifted received OFDM symbols. Only a one-tap equalizer is needed to detect the time domain signals from the blind equalizer output, and one pilot OFDM symbol is utilized to estimate the required channel state information for the design of the one-tap equalizer. Simulation results show that this technique is robust against the number of shifts in excess of the CP length

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Space-time adaptive processing techniques for multichannel mobile passive radar

    Get PDF
    Passive radar technology has reached a level of maturity for stationary sensor operations, widely proving the ability to detect, localize and track targets, by exploiting different kinds of illuminators of opportunity. In recent years, a renewed interest from both the scientific community and the industry has opened new perspectives and research areas. One of the most interesting and challenging ones is the use of passive radar sensors onboard moving platforms. This may offer a number of strategic advantages and extend the functionalities of passive radar to applications like synthetic aperture radar (SAR) imaging and ground moving target indication (GMTI). However, these benefits are paid in terms of motion-induced Doppler distortions of the received signals, which can adversely affect the system performance. In the case of surveillance applications, the detection of slowly moving targets is hindered by the Doppler-spread clutter returns, due to platform motion, and requires the use of space-time processing techniques, applied on signals collected by multiple receiving channels. Although in recent technical literature the feasibility of this concept has been preliminarily demonstrated, mobile passive radar is still far from being a mature technology and several issues still need to be addressed, mostly connected to the peculiar characteristics of the passive bistatic scenario. Specifically, significant limitations may come from the continuous and time-varying nature of the typical waveforms of opportunity, not suitable for conventional space-time processing techniques. Moreover, the low directivity of the practical receiving antennas, paired with a bistatic omni-directional illumination, further increases the clutter Doppler bandwidth and results in the simultaneous reception of non-negligible clutter contributions from a very wide angular sector. Such contributions are likely to undergo an angle-dependent imbalance across the receiving channels, exacerbated by the use of low-cost hardware. This thesis takes research on mobile passive radar for surveillance applications one step further, finding solutions to tackle the main limitations deriving from the passive bistatic framework, while preserving the paradigm of a simple system architecture. Attention is devoted to the development of signal processing algorithms and operational strategies for multichannel mobile passive radar, focusing on space-time processing techniques aimed at clutter cancellation and slowly moving target detection and localization. First, a processing scheme based on the displaced phase centre antenna (DPCA) approach is considered, for dual-channel systems. The scheme offers a simple and effective solution for passive radar GMTI, but its cancellation performance can be severely compromised by the presence of angle-dependent imbalances affecting the receiving channels. Therefore, it is paired with adaptive clutter-based calibration techniques, specifically devised for mobile passive radar. By exploiting the fine Doppler resolution offered by the typical long integration times and the one-to-one relationship between angle of arrival and Doppler frequency of the stationary scatterers, the devised techniques compensate for the angle-dependent imbalances and prove largely necessary to guarantee an effective clutter cancellation. Then, the attention is focused on space-time adaptive processing (STAP) techniques for multichannel mobile passive radar. In this case, the clutter cancellation capability relies on the adaptivity of the space-time filter, by resorting to an adjacent-bin post-Doppler (ABPD) approach. This allows to significantly reduce the size of the adaptive problem and intrinsically compensate for potential angle-dependent channel errors, by operating on a clutter subspace accounting for a limited angular sector. Therefore, ad hoc strategies are devised to counteract the effects of channel imbalance on the moving target detection and localization performance. By exploiting the clutter echoes to correct the spatial steering vector mismatch, the proposed STAP scheme is shown to enable an accurate estimation of target direction of arrival (DOA), which represents a critical task in system featuring few wide beam antennas. Finally, a dual cancelled channel STAP scheme is proposed, aimed at further reducing the system computational complexity and the number of required training data, compared to a conventional full-array solution. The proposed scheme simplifies the DOA estimation process and proves to be robust against the adaptivity losses commonly arising in a real bistatic clutter scenario, allowing effective operation even in the case of a limited sample support. The effectiveness of the techniques proposed in this work is validated by means of extensive simulated analyses and applications to real data, collected by an experimental multichannel passive radar installed on a moving platform and based on DVB-T transmission
    corecore