20 research outputs found

    Variable Fractional Digital Delay Filter on Reconfigurable Hardware

    Get PDF
    This thesis describes a design for a variable fractional delay (VFD) finite impulse reponse (FIR) filter implemented on reconfigurable hardware. Fractionally delayed signals are required for several audio-based applications, including echo cancellation and musical signal analysis. Traditionally, VFD FIR filters have been implemented using a fixed structure in software based upon the order of the filter. This fixed structure restricts the range of valid fractional delay values permitted by the filter. This proposed design implements an order-scalable FIR filter, permitting fractionally delayed signals of widely varying integer sizes. Furthermore, the proposed design of this thesis builds upon the traditional Lagrange interpolator FIR filter using either asoftware-based coefficient computational unit or hardware-based coefficient computational unit in reconfigurable hardware for updating the FIR coefficients in real-time. Traditional Lagrange interpolator FIR filters have only permitted fixed fractional delay. However, by leveraging todays (2012) low-cost high performance reconfigurable hardware, an FIR-based fractional delay filter was created to permit varying fractional delay. A software/hardware hybrid VFD filter was prototyped using the Xilinx System Generator toolkit. The resulting real-time VFD FIR filter was tested usingSystem Generator, as well as Xilinx ISE and ModelSim.M.S., Computer Engineering -- Drexel University, 201

    FIR Filter Design Using Distributed Maximal Flatness Method

    Get PDF
    In the paper a novel method for filter design based on the distributed maximal flatness method is presented. The proposed approach is based on the method used to design the most common FIR fractional delay filter – the maximally flat filter. The MF filter demonstrates excellent performance but only in a relatively narrow frequency range around zero frequency but its magnitude response is no greater than one. This ,,passiveness” is the reason why despite of its narrow band of accurate approximation, the maximally flat filter is widely used in applications in which the adjustable delay is required in feedback loop. In the proposed method the maximal flatness conditions forced in standard approach at zero frequency are spread over the desired band of interest. In the result FIR filters are designed with width of the approximation band adjusted according to needs of the designer. Moreover a weighting function can be applied to the error function allowing for designs differing in error characteristics. Apart from the design of fractional delay filters the method is presented on the example of differentiator, raised cosine and square root raised cosine FIR filters. Additionally, the proposed method can be readily adapted for variable fractional delay filter design regardless of the filter type.

    Improved IIR Low-Pass Smoothers and Differentiators with Tunable Delay

    Full text link
    Regression analysis using orthogonal polynomials in the time domain is used to derive closed-form expressions for causal and non-causal filters with an infinite impulse response (IIR) and a maximally-flat magnitude and delay response. The phase response of the resulting low-order smoothers and differentiators, with low-pass characteristics, may be tuned to yield the desired delay in the pass band or for zero gain at the Nyquist frequency. The filter response is improved when the shape of the exponential weighting function is modified and discrete associated Laguerre polynomials are used in the analysis. As an illustrative example, the derivative filters are used to generate an optical-flow field and to detect moving ground targets, in real video data collected from an airborne platform with an electro-optic sensor.Comment: To appear in Proc. International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, 23rd-25th Nov. 201

    Cardinal Exponential Splines: Part II—Think Analog, Act Digital

    Get PDF
    By interpreting the Green-function reproduction property of exponential splines in signal processing terms, we uncover a fundamental relation that connects the impulse responses of allpole analog filters to their discrete counterparts. The link is that the latter are the B-spline coefficients of the former (which happen to be exponential splines). Motivated by this observation, we introduce an extended family of cardinal splines—the generalized E-splines—to generalize the concept for all convolution operators with rational transfer functions. We construct the corresponding compactly-supported B-spline basis functions, which are characterized by their poles and zeros, thereby establishing an interesting connection with analog filter design techniques. We investigate the properties of these new B-splines and present the corresponding signal processing calculus, which allows us to perform continuous-time operations, such as convolution, differential operators, and modulation, by simple application of the discrete version of these operators in the B-spline domain. In particular, we show how the formalism can be used to obtain exact, discrete implementations of analog filters. Finally, we apply our results to the design of hybrid signal processing systems that rely on digital filtering to compensate for the nonideal characteristics of real-world analog-to-digital (A-to-D) and D-to-A conversion systems

    Cardinal exponential splines: part II - think analog, act digital

    Full text link

    Efficient algorithms for arbitrary sample rate conversion with application to wave field synthesis

    Get PDF
    Arbitrary sample rate conversion (ASRC) is used in many fields of digital signal processing to alter the sampling rate of discrete-time signals by arbitrary, potentially time-varying ratios. This thesis investigates efficient algorithms for ASRC and proposes several improvements. First, closed-form descriptions for the modified Farrow structure and Lagrange interpolators are derived that are directly applicable to algorithm design and analysis. Second, efficient implementation structures for ASRC algorithms are investigated. Third, this thesis considers coefficient design methods that are optimal for a selectable error norm and optional design constraints. Finally, the performance of different algorithms is compared for several performance metrics. This enables the selection of ASRC algorithms that meet the requirements of an application with minimal complexity. Wave field synthesis (WFS), a high-quality spatial sound reproduction technique, is the main application considered in this work. For WFS, sophisticated ASRC algorithms improve the quality of moving sound sources. However, the improvements proposed in this thesis are not limited to WFS, but applicable to general-purpose ASRC problems.ï»żVerfahren zur unbeschrĂ€nkten Abtastratenwandlung (arbitrary sample rate conversion,ASRC) ermöglichen die Änderung der Abtastrate zeitdiskreter Signale um beliebige, zeitvarianteVerhĂ€ltnisse. ASRC wird in vielen Anwendungen digitaler Signalverarbeitung eingesetzt.In dieser Arbeit wird die Verwendung von ASRC-Verfahren in der Wellenfeldsynthese(WFS), einem Verfahren zur hochqualitativen, rĂ€umlich korrekten Audio-Wiedergabe, untersucht.Durch ASRC-Algorithmen kann die WiedergabequalitĂ€t bewegter Schallquellenin WFS deutlich verbessert werden. Durch die hohe Zahl der in einem WFS-Wiedergabesystembenötigten simultanen ASRC-Operationen ist eine direkte Anwendung hochwertigerAlgorithmen jedoch meist nicht möglich.Zur Lösung dieses Problems werden verschiedene BeitrĂ€ge vorgestellt. Die KomplexitĂ€tder WFS-Signalverarbeitung wird durch eine geeignete Partitionierung der ASRC-Algorithmensignifikant reduziert, welche eine effiziente Wiederverwendung von Zwischenergebnissenermöglicht. Dies erlaubt den Einsatz hochqualitativer Algorithmen zur Abtastratenwandlungmit einer KomplexitĂ€t, die mit der Anwendung einfacher konventioneller ASRCAlgorithmenvergleichbar ist. Dieses Partitionierungsschema stellt jedoch auch zusĂ€tzlicheAnforderungen an ASRC-Algorithmen und erfordert AbwĂ€gungen zwischen Performance-Maßen wie der algorithmischen KomplexitĂ€t, Speicherbedarf oder -bandbreite.Zur Verbesserung von Algorithmen und Implementierungsstrukturen fĂŒr ASRC werdenverschiedene Maßnahmen vorgeschlagen. Zum Einen werden geschlossene, analytischeBeschreibungen fĂŒr den kontinuierlichen Frequenzgang verschiedener Klassen von ASRCStruktureneingefĂŒhrt. Insbesondere fĂŒr Lagrange-Interpolatoren, die modifizierte Farrow-Struktur sowie Kombinationen aus Überabtastung und zeitkontinuierlichen Resampling-Funktionen werden kompakte Darstellungen hergeleitet, die sowohl Aufschluss ĂŒber dasVerhalten dieser Filter geben als auch eine direkte Verwendung in Design-Methoden ermöglichen.Einen zweiten Schwerpunkt bildet das Koeffizientendesign fĂŒr diese Strukturen, insbesonderezum optimalen Entwurf bezĂŒglich einer gewĂ€hlten Fehlernorm und optionaler Entwurfsbedingungenund -restriktionen. Im Gegensatz zu bisherigen AnsĂ€tzen werden solcheoptimalen Entwurfsmethoden auch fĂŒr mehrstufige ASRC-Strukturen, welche ganzzahligeÜberabtastung mit zeitkontinuierlichen Resampling-Funktionen verbinden, vorgestellt.FĂŒr diese Klasse von Strukturen wird eine Reihe angepasster Resampling-Funktionen vorgeschlagen,welche in Verbindung mit den entwickelten optimalen Entwurfsmethoden signifikanteQualitĂ€tssteigerungen ermöglichen.Die Vielzahl von ASRC-Strukturen sowie deren Design-Parameter bildet eine Hauptschwierigkeitbei der Auswahl eines fĂŒr eine gegebene Anwendung geeigneten Verfahrens.Evaluation und Performance-Vergleiche bilden daher einen dritten Schwerpunkt. Dazu wirdzum Einen der Einfluss verschiedener Entwurfsparameter auf die erzielbare QualitĂ€t vonASRC-Algorithmen untersucht. Zum Anderen wird der benötigte Aufwand bezĂŒglich verschiedenerPerformance-Metriken in AbhĂ€ngigkeit von Design-QualitĂ€t dargestellt.Auf diese Weise sind die Ergebnisse dieser Arbeit nicht auf WFS beschrĂ€nkt, sondernsind in einer Vielzahl von Anwendungen unbeschrĂ€nkter Abtastratenwandlung nutzbar

    Design of digital differentiators

    Get PDF
    A digital differentiator simply involves the derivation of an input signal. This work includes the presentation of first-degree and second-degree differentiators, which are designed as both infinite-impulse-response (IIR) filters and finite-impulse-response (FIR) filters. The proposed differentiators have low-pass magnitude response characteristics, thereby rejecting noise frequencies higher than the cut-off frequency. Both steady-state frequency-domain characteristics and Time-domain analyses are given for the proposed differentiators. It is shown that the proposed differentiators perform well when compared to previously proposed filters. When considering the time-domain characteristics of the differentiators, the processing of quantized signals proved especially enlightening, in terms of the filtering effects of the proposed differentiators. The coefficients of the proposed differentiators are obtained using an optimization algorithm, while the optimization objectives include magnitude and phase response. The low-pass characteristic of the proposed differentiators is achieved by minimizing the filter variance. The low-pass differentiators designed show the steep roll-off, as well as having highly accurate magnitude response in the pass-band. While having a history of over three hundred years, the design of fractional differentiator has become a ‘hot topic’ in recent decades. One challenging problem in this area is that there are many different definitions to describe the fractional model, such as the Riemann-Liouville and Caputo definitions. Through use of a feedback structure, based on the Riemann-Liouville definition. It is shown that the performance of the fractional differentiator can be improved in both the frequency-domain and time-domain. Two applications based on the proposed differentiators are described in the thesis. Specifically, the first of these involves the application of second degree differentiators in the estimation of the frequency components of a power system. The second example concerns for an image processing, edge detection application

    Precise velocity and acceleration determination using a standalone GPS receiver in real time

    Get PDF
    Precise velocity and acceleration information is required for many real time applications. A standalone GPS receiver can be used to derive such information; however, there are many unsolved problems in this regard. This thesis establishes the theoretical basis for precise velocity and acceleration determination using a standalone GPS receiver in real time. An intensive investigation has been conducted into the Doppler effect in GPS. A highly accurate Doppler shift one-way observation equation is developed based on a comprehensive error analysis of each contributing factor including relativistic effects. Various error mitigation/elimination methods have been developed to improve the measurement accuracy of both the Doppler and Doppler-rate. Algorithms and formulae are presented to obtain real-time satellite velocity and acceleration in the ECEF system from the broadcast ephemeris. Low order IIR differentiators are designed to derive Doppler and Doppler-rate measurements from the raw GPS data for real-time applications. Abnormalities and their corresponding treatments in real-time operations are also discussed. In addition to the velocity and acceleration determination, this thesis offers a good tool for GPS measurement modelling and for design of interpolators, differentiators, as well as Kalman filters. The relativistic terms presented by this thesis suggest that it is possible to measure the geopotential directly using Doppler shift measurements. This may lead to a foundation for the development of a next generation satellite system for geodesy in the future

    Analogue filter networks: developments in theory, design and analyses

    Get PDF
    Not availabl

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest
    corecore