7,767 research outputs found

    Semantic Remote Sensing Scenes Interpretation and Change Interpretation

    Get PDF
    A fundamental objective of remote sensing imagery is to spread out the knowledge about our environment and to facilitate the interpretation of different phenomena affecting the Earth’s surface. The main goal of this chapter is to understand and interpret possible changes in order to define subsequently strategies and adequate decision-making for a better soil management and protection. Consequently, the semantic interpretation of remote sensing data, which consists of extracting useful information from image date for attaching semantics to the observed phenomenon, allows easy understanding and interpretation of such occurring changes. However, performing change interpretation task is not only based on the perceptual information derived from data but also based on additional knowledge sources such as a prior and contextual. This knowledge needs to be encoded in an appropriate way for being used as a guide in the interpretation process. On the other hand, interpretation may take place at several levels of complexity from the simple recognition of objects on the analyzed scene to the inference of site conditions and to change interpretation. For each level, information elements such as data, information and knowledge need to be represented and characterized. This chapter highlights the importance of ontologies exploiting for encoding the domain knowledge and for using it as a guide in the semantic scene interpretation task

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201
    corecore