12,820 research outputs found

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    MobilitApp: Analysing mobility data of citizens in the metropolitan area of Barcelona

    Full text link
    MobilitApp is a platform designed to provide smart mobility services in urban areas. It is designed to help citizens and transport authorities alike. Citizens will be able to access the MobilitApp mobile application and decide their optimal transportation strategy by visualising their usual routes, their carbon footprint, receiving tips, analytics and general mobility information, such as traffic and incident alerts. Transport authorities and service providers will be able to access information about the mobility pattern of citizens to o er their best services, improve costs and planning. The MobilitApp client runs on Android devices and records synchronously, while running in the background, periodic location updates from its users. The information obtained is processed and analysed to understand the mobility patterns of our users in the city of Barcelona, Spain

    DeepASL: Enabling Ubiquitous and Non-Intrusive Word and Sentence-Level Sign Language Translation

    Full text link
    There is an undeniable communication barrier between deaf people and people with normal hearing ability. Although innovations in sign language translation technology aim to tear down this communication barrier, the majority of existing sign language translation systems are either intrusive or constrained by resolution or ambient lighting conditions. Moreover, these existing systems can only perform single-sign ASL translation rather than sentence-level translation, making them much less useful in daily-life communication scenarios. In this work, we fill this critical gap by presenting DeepASL, a transformative deep learning-based sign language translation technology that enables ubiquitous and non-intrusive American Sign Language (ASL) translation at both word and sentence levels. DeepASL uses infrared light as its sensing mechanism to non-intrusively capture the ASL signs. It incorporates a novel hierarchical bidirectional deep recurrent neural network (HB-RNN) and a probabilistic framework based on Connectionist Temporal Classification (CTC) for word-level and sentence-level ASL translation respectively. To evaluate its performance, we have collected 7,306 samples from 11 participants, covering 56 commonly used ASL words and 100 ASL sentences. DeepASL achieves an average 94.5% word-level translation accuracy and an average 8.2% word error rate on translating unseen ASL sentences. Given its promising performance, we believe DeepASL represents a significant step towards breaking the communication barrier between deaf people and hearing majority, and thus has the significant potential to fundamentally change deaf people's lives

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • 

    corecore