101,429 research outputs found

    MEGA: Multilingual Evaluation of Generative AI

    Full text link
    Generative AI models have shown impressive performance on many Natural Language Processing tasks such as language understanding, reasoning, and language generation. An important question being asked by the AI community today is about the capabilities and limits of these models, and it is clear that evaluating generative AI is very challenging. Most studies on generative LLMs have been restricted to English and it is unclear how capable these models are at understanding and generating text in other languages. We present the first comprehensive benchmarking of generative LLMs - MEGA, which evaluates models on standard NLP benchmarks, covering 16 NLP datasets across 70 typologically diverse languages. We compare the performance of generative LLMs including Chat-GPT and GPT-4 to State of the Art (SOTA) non-autoregressive models on these tasks to determine how well generative models perform compared to the previous generation of LLMs. We present a thorough analysis of the performance of models across languages and tasks and discuss challenges in improving the performance of generative LLMs on low-resource languages. We create a framework for evaluating generative LLMs in the multilingual setting and provide directions for future progress in the field.Comment: EMNLP 202

    The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification

    Get PDF
    We present the Bayesian Case Model (BCM), a general framework for Bayesian case-based reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive power of CBR to a Bayesian generative framework. The BCM learns prototypes, the “quintessential” observations that best represent clusters in a dataset, by performing joint inference on cluster labels, prototypes and important features. Simultaneously, BCM pursues sparsity by learning subspaces, the sets of features that play important roles in the characterization of the prototypes. The prototype and subspace representation provides quantitative benefits in interpretability while preserving classification accuracy. Human subject experiments verify statistically significant improvements to participants’ understanding when using explanations produced by BCM, compared to those given by prior art

    Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach

    Full text link
    A generative model for high-fidelity point clouds is of great importance in synthesizing 3d environments for applications such as autonomous driving and robotics. Despite the recent success of deep generative models for 2d images, it is non-trivial to generate 3d point clouds without a comprehensive understanding of both local and global geometric structures. In this paper, we devise a new 3d point cloud generation framework using a divide-and-conquer approach, where the whole generation process can be divided into a set of patch-wise generation tasks. Specifically, all patch generators are based on learnable priors, which aim to capture the information of geometry primitives. We introduce point- and patch-wise transformers to enable the interactions between points and patches. Therefore, the proposed divide-and-conquer approach contributes to a new understanding of point cloud generation from the geometry constitution of 3d shapes. Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation, where it clearly outperforms recent state-of-the-art methods for high-fidelity point cloud generation

    Visuality and the haptic qualities of the line in generative art

    Get PDF
    The line has an important and particular relationship with the generative artwork distinct from other elements such as the ‘pixel’, ‘voxel’ or the ‘points’ that make up point clouds. The line has a dual nature as both continuous and discrete which makes it perhaps uniquely placed to straddle the analog and digital worlds. It has a haptic or felt quality as well as an inherent ambiguity that promotes a relatively active interpretive role for the audience. There is an extensive history of the line in generative systems and artworks, taking both analog and digital forms. That it continues to play an important role, alongside other more photographically inspired ‘perceptual schemas’, may be a testament to its enduring usefulness and unique character. This paper considers the particular affordances and the ‘visuality’ of the line in relation to generative artworks. This includes asking how we might account for the felt quality of lines and the socially and culturally constructed aspects that shape our relationship with them. It asks whether, in what has been described as a ‘post digital’ or even ‘post post digital’ world, the line may offer a way to re-emphasise a more human scale and a materiality that can push back, gently, against other more dominant perceptual schemas. It also asks what generative art can learn from drawing theory, many of the concerns of which parallel and intersect with those of generative art
    • 

    corecore