281 research outputs found

    On the Experiments about the Nonprehensile Reconfiguration of a Rolling Sphere on a Plate

    Get PDF
    A method to reconfigure in a nonprehensile way the pose (position and orientation) of a sphere rolling on a plate is proposed in this letter. The nonholonomic nature of the task is first solved at a planning level, where a geometric technique is employed to derive a Cartesian path to steer the sphere towards the arbitrarily desired pose. Then, an integral passivity-based control is designed to track the planned trajectory. The port-Hamiltonian formalism is employed to model the whole dynamics. Two approaches to move the plate are addressed in this paper, showing that only one of them allows the full controllability of the system. A humanoid-like robot is employed to bolster the proposed method experimentally

    Nonprehensile Dynamic Manipulation: A Survey

    Get PDF
    Nonprehensile dynamic manipulation can be reason- ably considered as the most complex manipulation task. It might be argued that such a task is still rather far from being fully solved and applied in robotics. This survey tries to collect the results reached so far by the research community about planning and control in the nonprehensile dynamic manipulation domain. A discussion about current open issues is addressed as well

    Planning Framework for Robotic Pizza Dough Stretching with a Rolling Pin

    Get PDF
    Stretching a pizza dough with a rolling pin is a nonprehensile manipulation. Since the object is deformable, force closure cannot be established, and the manipulation is carried out in a nonprehensile way. The framework of this pizza dough stretching application that is explained in this chapter consists of four sub-procedures: (i) recognition of the pizza dough on a plate, (ii) planning the necessary steps to shape the pizza dough to the desired form, (iii) path generation for a rolling pin to execute the output of the pizza dough planner, and (iv) inverse kinematics for the bi-manual robot to grasp and control the rolling pin properly. Using the deformable object model described in Chap. 3, each sub-procedure of the proposed framework is explained sequentially

    Design and Development of an Integrated Mobile Robot System for Use in Simple Formations

    Get PDF
    In recent years, formation control of autonomous unmanned vehicles has become an active area of research with its many broad applications in areas such as transportation and surveillance. The work presented in this thesis involves the design and implementation of small unmanned ground vehicles to be used in leader-follower formations. This mechatronics project involves breadth in areas of mechanical, electrical, and computer engineering design. A vehicle with a unicycle-type drive mechanism is designed in 3D CAD software and manufactured using 3D printing capabilities. The vehicle is then modeled using the unicycle kinematic equations of motion and simulated in MATLAB/Simulink. Simple motion tasks are then performed onboard the vehicle utilizing the vehicle model via software, and leader-follower formations are implemented with multiple vehicles

    Global Formulation and Control of a Class of Nonholonomic Systems

    Get PDF
    This thesis study motion of a class of non-holonomic systems using geometric mechanics, that provide us an efficient way to formulate and analyze the dynamics and their temporal evolution on the configuration manifold. The kinematics equations of the system, viewed as a rigid body, are constrained by the requirement that the system maintain contact with the surface. They describe the constrained translation of the point of contact on the surface. In this thesis, we have considered three different examples with nonholonomic constraint i-e knife edge or pizza cutter, a circular disk rolling without slipping, and rolling sphere. For each example, the kinematics equations of the system are defined without the use of local coordinates, such that the model is globally defined on the manifold without singularities or ambiguities. Simulation results are included that show effectiveness of the proposed control laws

    Dissipation-Induced Heteroclinic Orbits in Tippe Tops

    Get PDF
    This paper demonstrates that the conditions for the existence of a dissipation-induced heteroclinic orbit between the inverted and noninverted states of a tippe top are determined by a complex version of the equations for a simple harmonic oscillator: the modified Maxwell–Bloch equations. A standard linear analysis reveals that the modified Maxwell–Bloch equations describe the spectral instability of the noninverted state and Lyapunov stability of the inverted state. Standard nonlinear analysis based on the energy momentum method gives necessary and sufficient conditions for the existence of a dissipation-induced connecting orbit between these relative equilibria

    Perception Based Navigation for Underactuated Robots.

    Full text link
    Robot autonomous navigation is a very active field of robotics. In this thesis we propose a hierarchical approach to a class of underactuated robots by composing a collection of local controllers with well understood domains of attraction. We start by addressing the problem of robot navigation with nonholonomic motion constraints and perceptual cues arising from onboard visual servoing in partially engineered environments. We propose a general hybrid procedure that adapts to the constrained motion setting the standard feedback controller arising from a navigation function in the fully actuated case. This is accomplished by switching back and forth between moving "down" and "across" the associated gradient field toward the stable manifold it induces in the constrained dynamics. Guaranteed to avoid obstacles in all cases, we provide conditions under which the new procedure brings initial configurations to within an arbitrarily small neighborhood of the goal. We summarize with simulation results on a sample of visual servoing problems with a few different perceptual models. We document the empirical effectiveness of the proposed algorithm by reporting the results of its application to outdoor autonomous visual registration experiments with the robot RHex guided by engineered beacons. Next we explore the possibility of adapting the resulting first order hybrid feedback controller to its dynamical counterpart by introducing tunable damping terms in the control law. Just as gradient controllers for standard quasi-static mechanical systems give rise to generalized "PD-style" controllers for dynamical versions of those standard systems, we show that it is possible to construct similar "lifts" in the presence of non-holonomic constraints notwithstanding the necessary absence of point attractors. Simulation results corroborate the proposed lift. Finally we present an implementation of a fully autonomous navigation application for a legged robot. The robot adapts its leg trajectory parameters by recourse to a discrete gradient descent algorithm, while managing its experiments and outcome measurements autonomously via the navigation visual servoing algorithms proposed in this thesis.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58412/1/glopes_1.pd

    A Global Steering Method for Nonholonomic Systems

    Full text link
    In this paper, we present an iterative steering algorithm for nonholonomic systems (also called driftless control-affine systems) and we prove its global convergence under the sole assumption that the Lie Algebraic Rank Condition (LARC) holds true everywhere. That algorithm is an extension of the one introduced in [21] for regular systems. The first novelty here consists in the explicit algebraic construction, starting from the original control system, of a lifted control system which is regular. The second contribution of the paper is an exact motion planning method for nilpotent systems, which makes use of sinusoidal control laws and which is a generalization of the algorithm described in [29] for chained-form systems

    Graphical User Interface (GUI) for Position and Trajectory Tracking Control of the Ball and Plate System Using H-Infinity Controller

    Get PDF
    In this paper, a graphical user interface (GUI) for position and trajectory tracking of the ball and plate system (BPS) control scheme using the double feedback loop structure i.e. a loop within a loop is proposed. The inner and the outer loop was designed using linear algebraic method by solving a set of Diophantine equations and  sensitivity function. The results were simulated in MATLAB 2018a, and the trajectory tracking was displayed on a GUI, which showed that the plate was able to be stabilized at a time of 0.3546 seconds, and also the ball settled at 1.7087 seconds, when a sinusoidal circular reference trajectory of radius 0.4m with an angular frequency of 1.57rad/sec was applied to the BPS, the trajectory tracking error was 0.0095m.  This shows that the controllers possess the following properties for the BPS, which are; good adaptability, strong robustness and a high control performance.   
    corecore