361 research outputs found

    Real world evaluation of aspect-oriented software development : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Software development has improved over the past decade with the rise in the popularity of the Object-Oriented (OO) development approach. However, software projects continue to grow in complexity and continue to have alarmingly low rates of success. Aspect-Oriented Programming (AOP) is touted to be one solution to this software development problem. It shows promise of reducing programming complexity, making software more flexible and more amenable to change. The central concept introduced by AOP is the aspect. An aspect is used to modularise crosscutting concerns in a similar fashion to the way classes modularise business concerns. A crosscutting concern cannot be modularised in approaches such as OO because the code to realise the concern must be spread throughout the module (e.g. a tracing concent is implemented by adding code to every method in a system). AOP also introduces join points, pointcuts, and advice which are used with aspects to capture crosscutting concerns so they can be localised in a modular unit. OO took approximately 20 years to become a mainstream development approach. AOP was only invented in 1997. This project considers whether AOP is ready for commercial adoption. This requires analysis of the AOP implementations available, tool support, design processes, testing tools, standards, and support infrastructure. Only when AOP is evaluated across all these criteria can it be established whether it is ready to be used in commercial projects. Moreover, if companies are to invest time and money into adopting AOP, they must be aware of the benefits and risks associated with its adoption. This project attempts to quantify the potential benefits in adopting AOP, as well as identifying areas of risk. SolNet Solutions Ltd, an Information Technology (IT) company in Wellington, New Zealand, is used in this study as a target environment for integration of aspects into a commercial development process. SolNet is in the business of delivering large scale enterprise Java applications. To assist in this process they have developed a Common Services Architecture (CSA) containing components that can be reused to reduce risk and cost to clients. However, the CSA is complicated and SolNet have identified aspects as a potential solution to decrease the complexity. Aspects were found to bring substantial improvement to the Service Layer of SolNet. applications, including substantial reductions in complexity and size. This reduces the cost and time of development, as well as the risk associated with the projects. Moreover, the CSA was used in a more consistent fashion making the system easier to understand and maintain, and several crosscutting concerns were modularised as part of a reusable aspect library which could eventually form part of their CSA. It was found that AOP is approaching commercial readiness. However, more work is needed on defining standards for aspect languages and modelling of design elements. The current solutions in this area are commercially viable, but would greatly benefit from a standardised approach. Aspect systems can be difficult to test and the effect of the weaving process on Java serialisation requires further investigation

    Structured Review of Code Clone Literature

    Get PDF
    This report presents the results of a structured review of code clone literature. The aim of the review is to assemble a conceptual model of clone-related concepts which helps us to reason about clones. This conceptual model unifies clone concepts from a wide range of literature, so that findings about clones can be compared with each other

    Experiences In Migrating An Industrial Application To Aspects

    Get PDF
    Aspect-Oriented Software Development (AOSD) is a paradigm aiming to solve problems of object-oriented programming (OOP). With normal OOP it’s often unlikely to accomplish fine system modularity due to crosscutting concerns being scattered and tangled throughout the system. AOSD resolves this problem by its capability to crosscut the regular code and as a consequence transfer the crosscutting concerns to a single model called aspect. This thesis describes an experiment on industrial application wherein the effectiveness of aspect-oriented techniques is explained in migration the OOP application into aspects. The experiment goals at first to identify the crosscutting concerns in source code of the industrial application and transform these concerns to a functionally equivalent aspect-oriented version. In addition to presenting experiences gained through the experiment, the thesis aims to provide practical guidance of aspect solutions in a real application

    Applying and Combining Three Different Aspect Mining Techniques

    Full text link
    Understanding a software system at source-code level requires understanding the different concerns that it addresses, which in turn requires a way to identify these concerns in the source code. Whereas some concerns are explicitly represented by program entities (like classes, methods and variables) and thus are easy to identify, crosscutting concerns are not captured by a single program entity but are scattered over many program entities and are tangled with the other concerns. Because of their crosscutting nature, such crosscutting concerns are difficult to identify, and reduce the understandability of the system as a whole. In this paper, we report on a combined experiment in which we try to identify crosscutting concerns in the JHotDraw framework automatically. We first apply three independently developed aspect mining techniques to JHotDraw and evaluate and compare their results. Based on this analysis, we present three interesting combinations of these three techniques, and show how these combinations provide a more complete coverage of the detected concerns as compared to the original techniques individually. Our results are a first step towards improving the understandability of a system that contains crosscutting concerns, and can be used as a basis for refactoring the identified crosscutting concerns into aspects.Comment: 28 page

    An Aspect Refactoring Tool for The Observer Pattern

    Get PDF
    Current integrated development environments such as Eclipse provide strong support for object- oriented automatic refactorings; however, the same cannot be said about aspect-oriented refactor- ings. Refactoring of design patterns is one area where aspect refactoring automation remains to be explored in depth and few current tools are available to support it. To support aspect refactoring tools we present the AJRefactor plug-in, a semi-automatic refactoring tool for the observer pattern, a widely-used solution in the design of object-oriented programs. Aspect refactoring of the observer pattern allows aspects to capture pattern-specific code into a more modularized unit, and local- izes the code of participating classes. After applying AJRefactor on two Java projects JHotDraw and Prevayler, the results showed that AJRefactor was able to refactor 75% of the total observer instances found in both projects. Also, the refactoring enhanced the modularity and loosens the coupling of the pattern classes. Finally, the results showed a significant time savings and a small reduction in code size when refactoring with AJRefactor
    • …
    corecore