153 research outputs found

    A study on stryi-icnos potatorum and pisum sativum as natural coagulants for meat food processing wastewater

    Get PDF
    Slow maintained load test is widely used by contractors in Malaysia to ensure the driven pile could accommodate the design load of the structure. Slow maintained load test is a test to determine load-settlement curve and pile capacity for a period of time using conventional load test. Conventional static pile load test equipment is large in size thus making it heavier and takes a long time to install. In addition, it consumes a lot of space which causes congestion at construction sites. Therefore, the objective of this thesis is to conduct a conventional load test by replacing the pile kentledge load with anchorage and reaction pile. Preparations of ten designs comprising six commercial designs were reviewed. In addition, four proposed designs were suggested for the setup. Final design was produced based on its safety factors and criteria referred via literature review. The test frame consists of reaction frame with four reaction helical pile with two helixes per reaction pile. The deformation shapes, safety factor, stress, and strain of the design and finite element of the model has been analysed with the use of SolidWorks and Pia.xis 30 software. SolidWorks software emphasizes on the model load-deflection relationship while Plaxis 30 ensures a correlation of reaction between pile uplift force and soil. Then, the model was tested on site to determine the relationship between physical load­deflection and pile-soil uplift force. The results of uplift force and displacement for numerical and physical test were nearly identical which increment of load­displacement graph pattern. The higher the uplift force, the higher the displacement obtained. In conclusion, the result obtained and the design may be considered as a guideline for future application of sustainable slow maintained pile load test

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Analysis of the security and reliability of packet transmission in Wireless Mesh Networks (WMNs) : a case study of Malicious Packet drop attack

    Get PDF
    Wireless Mesh Networks (WMNs) are known for possessing good attributes such as low up-front cost, easy network maintenance, and reliable service coverage. This has largely made them to be adopted in various areas such as; school campus networks, community networking, pervasive healthcare, office and home automation, emergency rescue operations and ubiquitous wireless networks. The routing nodes are equipped with self-organized and self-configuring capabilities. The routing mechanisms of WMNs depend on the collaboration of all participating nodes for reliable network performance. However, it has been noted that most routing algorithms proposed for WMNs in the last few years are designed with the assumption that all the participating nodes will collaboratively be involved in relaying the data packets originated from a source to a multi-hop destination. Such design approach exposes WMNs to vulnerability such as malicious packet drop attack. Therefore, it is imperative to design and implement secure and reliable packet routing mechanisms to mitigate this type of attack. While there are works that have attempted to implement secure routing approach, the findings in this research unearthed that further research works are required to improve the existing secure routing in order to provide more secure and reliable packet transmission in WMNs, in the event of denial of service (DoS) attacks such black hole malicious pack drop attack. This study further presents an analysis of the impact of the black hole malicious packet drop attack with other influential factors in WMNs. In the study, NS-3 simulator was used with AODV as the routing protocol. The results show that the packet delivery ratio and throughput of WMN under attack decreases sharply as compared to WMN free from attack

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Implementation and Evaluation of A Low-Cost Intrusion Detection System For Community Wireless Mesh Networks

    Get PDF
    Rural Community Wireless Mesh Networks (WMN) can be great assets to rural communities, helping them connect to the rest of their region and beyond. However, they can be a liability in terms of security. Due to the ad-hoc nature of a WMN, and the wide variety of applications and systems that can be found in such a heterogeneous environment there are multiple points of intrusion for an attacker. An unsecured WMN can lead to privacy and legal problems for the users of the network. Due to the resource constrained environment, traditional Intrusion Detection Systems (IDS) have not been as successful in defending these wireless network environments, as they were in wired network deployments. This thesis proposes that an IDS made up of low cost, low power devices can be an acceptable base for a Wireless Mesh Network Intrusion Detection System. Because of the device's low power, cost and ease of use, such a device could be easily deployed and maintained in a rural setting such as a Community WMN. The proposed system was compared to a standard IDS solution that would not cover the entire network, but had much more computing power but also a higher capital cost as well as maintenance costs. By comparing the low cost low power IDS to a standard deployment of an open source IDS, based on network coverage and deployment costs, a determination can be made that a low power solution can be feasible in a rural deployment of a WMN
    • 

    corecore