15,574 research outputs found

    Introducing risk management into the grid

    Get PDF
    Service Level Agreements (SLAs) are explicit statements about all expectations and obligations in the business partnership between customers and providers. They have been introduced in Grid computing to overcome the best effort approach, making the Grid more interesting for commercial applications. However, decisions on negotiation and system management still rely on static approaches, not reflecting the risk linked with decisions. The EC-funded project "AssessGrid" aims at introducing risk assessment and management as a novel decision paradigm into Grid computing. This paper gives a general motivation for risk management and presents the envisaged architecture of a "risk-aware" Grid middleware and Grid fabric, highlighting its functionality by means of three showcase scenarios

    Predicting deadline transgressions using event logs

    Get PDF
    Effective risk management is crucial for any organisation. One of its key steps is risk identification, but few tools exist to support this process. Here we present a method for the automatic discovery of a particular type of process-related risk, the danger of deadline transgressions or overruns, based on the analysis of event logs. We define a set of time-related process risk indicators, i.e., patterns observable in event logs that highlight the likelihood of an overrun, and then show how instances of these patterns can be identified automatically using statistical principles. To demonstrate its feasibility, the approach has been implemented as a plug-in module to the process mining framework ProM and tested using an event log from a Dutch financial institution

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    Distributed simulation of city inundation by coupled surface and subsurface porous flow for urban flood decision support system

    Get PDF
    We present a decision support system for flood early warning and disaster management. It includes the models for data-driven meteorological predictions, for simulation of atmospheric pressure, wind, long sea waves and seiches; a module for optimization of flood barrier gates operation; models for stability assessment of levees and embankments, for simulation of city inundation dynamics and citizens evacuation scenarios. The novelty of this paper is a coupled distributed simulation of surface and subsurface flows that can predict inundation of low-lying inland zones far from the submerged waterfront areas, as observed in St. Petersburg city during the floods. All the models are wrapped as software services in the CLAVIRE platform for urgent computing, which provides workflow management and resource orchestration.Comment: Pre-print submitted to the 2013 International Conference on Computational Scienc

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    Design-time Models for Resiliency

    Get PDF
    Resiliency in process-aware information systems is based on the availability of recovery flows and alternative data for coping with missing data. In this paper, we discuss an approach to process and information modeling to support the specification of recovery flows and alternative data. In particular, we focus on processes using sensor data from different sources. The proposed model can be adopted to specify resiliency levels of information systems, based on event-based and temporal constraints

    Considering Human Aspects on Strategies for Designing and Managing Distributed Human Computation

    Full text link
    A human computation system can be viewed as a distributed system in which the processors are humans, called workers. Such systems harness the cognitive power of a group of workers connected to the Internet to execute relatively simple tasks, whose solutions, once grouped, solve a problem that systems equipped with only machines could not solve satisfactorily. Examples of such systems are Amazon Mechanical Turk and the Zooniverse platform. A human computation application comprises a group of tasks, each of them can be performed by one worker. Tasks might have dependencies among each other. In this study, we propose a theoretical framework to analyze such type of application from a distributed systems point of view. Our framework is established on three dimensions that represent different perspectives in which human computation applications can be approached: quality-of-service requirements, design and management strategies, and human aspects. By using this framework, we review human computation in the perspective of programmers seeking to improve the design of human computation applications and managers seeking to increase the effectiveness of human computation infrastructures in running such applications. In doing so, besides integrating and organizing what has been done in this direction, we also put into perspective the fact that the human aspects of the workers in such systems introduce new challenges in terms of, for example, task assignment, dependency management, and fault prevention and tolerance. We discuss how they are related to distributed systems and other areas of knowledge.Comment: 3 figures, 1 tabl

    Data Envelopment Analysis (Dea) approach In efficiency transport manufacturing industry in Malaysia

    Get PDF
    The objective of this study was to measure of technical efficiency, transport manufacturing industry in Malaysia score using the data envelopment analysis (DEA) from 2005 to 2010. The efficiency score analysis used only two inputs, i.e., capital and labor and one output i.e., total of sales. The results shown that the average efficiency score of the Banker, Charnes, Cooper - Variable Returns to Scale (BCC-VRS) model is higher than the Charnes, Cooper, Rhodes - Constant Return to Scale (CCR-CRS) model. Based on the BCC-VRS model, the average efficiency score was at a moderate level and only four sub-industry that recorded an average efficiency score more than 0.50 percent during the period study. The implication of this result suggests that the transport manufacturing industry needs to increase investment, especially in human capital such as employee training, increase communication expenses such as ICT and carry out joint ventures as well as research and development activities to enhance industry efficiency
    • 

    corecore