357 research outputs found

    The state of MIIND

    Get PDF
    MIIND (Multiple Interacting Instantiations of Neural Dynamics) is a highly modular multi-level C++ framework, that aims to shorten the development time for models in Cognitive Neuroscience (CNS). It offers reusable code modules (libraries of classes and functions) aimed at solving problems that occur repeatedly in modelling, but tries not to impose a specific modelling philosophy or methodology. At the lowest level, it offers support for the implementation of sparse networks. For example, the library SparseImplementationLib supports sparse random networks and the library LayerMappingLib can be used for sparse regular networks of filter-like operators. The library DynamicLib, which builds on top of the library SparseImplementationLib, offers a generic framework for simulating network processes. Presently, several specific network process implementations are provided in MIIND: the Wilson–Cowan and Ornstein–Uhlenbeck type, and population density techniques for leaky-integrate-and-fire neurons driven by Poisson input. A design principle of MIIND is to support detailing: the refinement of an originally simple model into a form where more biological detail is included. Another design principle is extensibility: the reuse of an existing model in a larger, more extended one. One of the main uses of MIIND so far has been the instantiation of neural models of visual attention. Recently, we have added a library for implementing biologically-inspired models of artificial vision, such as HMAX and recent successors. In the long run we hope to be able to apply suitably adapted neuronal mechanisms of attention to these artificial models

    Distributed learning of CNNs on heterogeneous CPU/GPU architectures

    Get PDF
    Convolutional Neural Networks (CNNs) have shown to be powerful classification tools in tasks that range from check reading to medical diagnosis, reaching close to human perception, and in some cases surpassing it. However, the problems to solve are becoming larger and more complex, which translates to larger CNNs, leading to longer training times that not even the adoption of Graphics Processing Units (GPUs) could keep up to. This problem is partially solved by using more processing units and distributed training methods that are offered by several frameworks dedicated to neural network training. However, these techniques do not take full advantage of the possible parallelization offered by CNNs and the cooperative use of heterogeneous devices with different processing capabilities, clock speeds, memory size, among others. This paper presents a new method for the parallel training of CNNs that can be considered as a particular instantiation of model parallelism, where only the convolutional layer is distributed. In fact, the convolutions processed during training (forward and backward propagation included) represent from 6060-9090\% of global processing time. The paper analyzes the influence of network size, bandwidth, batch size, number of devices, including their processing capabilities, and other parameters. Results show that this technique is capable of diminishing the training time without affecting the classification performance for both CPUs and GPUs. For the CIFAR-10 dataset, using a CNN with two convolutional layers, and 500500 and 15001500 kernels, respectively, best speedups achieve 3.28×3.28\times using four CPUs and 2.45×2.45\times with three GPUs. Modern imaging datasets, larger and more complex than CIFAR-10 will certainly require more than 6060-9090\% of processing time calculating convolutions, and speedups will tend to increase accordingly

    Personalized Sketch-Based Brushing in Scatterplots

    Get PDF
    Brushing is at the heart of most modern visual analytics solutions and effective and efficient brushing is crucial for successful interactive data exploration and analysis. As the user plays a central role in brushing, several data-driven brushing tools have been designed that are based on predicting the user's brushing goal. All of these general brushing models learn the users' average brushing preference, which is not optimal for every single user. In this paper, we propose an innovative framework that offers the user opportunities to improve the brushing technique while using it. We realized this framework with a CNN-based brushing technique and the result shows that with additional data from a particular user, the model can be refined (better performance in terms of accuracy), eventually converging to a personalized model based on a moderate amount of retraining.acceptedVersio

    Simulating sensorimotor systems with cortical topology

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references.Not availabl

    An investigation into adaptive power reduction techniques for neural hardware

    No full text
    In light of the growing applicability of Artificial Neural Network (ANN) in the signal processing field [1] and the present thrust of the semiconductor industry towards lowpower SOCs for mobile devices [2], the power consumption of ANN hardware has become a very important implementation issue. Adaptability is a powerful and useful feature of neural networks. All current approaches for low-power ANN hardware techniques are ‘non-adaptive’ with respect to the power consumption of the network (i.e. power-reduction is not an objective of the adaptation/learning process). In the research work presented in this thesis, investigations on possible adaptive power reduction techniques have been carried out, which attempt to exploit the adaptability of neural networks in order to reduce the power consumption. Three separate approaches for such adaptive power reduction are proposed: adaptation of size, adaptation of network weights and adaptation of calculation precision. Initial case studies exhibit promising results with significantpower reduction
    • 

    corecore