273,170 research outputs found

    Path planning for socially-aware humanoid robots

    Get PDF
    Designing efficient autonomous navigation systems for mobile robots involves consideration of the robotĂ­s environment while arriving at a systems architecture that trades off multiple constraints. We have architected a navigation framework for socially-aware autonomous robot navigation, using only the on-board computing resources. Our goal is to foster the development of several important service robotics applications using this platform. Our framework allows a robot to autonomously navigate in indoor environments while accounting for people (i.e., estimating the path of all individuals in the environment), respecting each individualĂ­s private space. In our design, we can leverage a wide number of sensors for navigation, including cameras, 2D and 3D scanners, and motion trackers. When designing our sensor system, we have considered that mobile robots have limited resources (i.e., power and computation) and that some sensors are costlier than others (e.g., cameras and 3D scanners stream data at high rates), requiring intensive computation to provide useful insight for real-time navigation. We tradeoff between accuracy, responsiveness, and power, and choose a Hokuyo UST-20LX 2D laser scanner for robot localization, obstacle detection and people tracking. We use an MPU-6050 for motion tracking. Our navigation framework features a low-power sensor system (< 5W) tailored for improved battery life in robotic applications while providing sufficient accuracy. We have completed a prototype for a Human Support Robot using the available onboard computing devices, requiring less than 60W to run. We estimate we can obtain similar performance, while reducing power by ~60%, utilizing low-power high-performance accelerator hardware and parallelized software.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    A computational framework for aesthetical navigation in musical search space

    Get PDF
    Paper presented at 3rd AISB symposium on computational creativity, AISB 2016, 4-6th April, Sheffield. Abstract. This article addresses aspects of an ongoing project in the generation of artificial Persian (-like) music. Liquid Persian Music software (LPM) is a cellular automata based audio generator. In this paper LPM is discussed from the view point of future potentials of algorithmic composition and creativity. Liquid Persian Music is a creative tool, enabling exploration of emergent audio through new dimensions of music composition. Various configurations of the system produce different voices which resemble musical motives in many respects. Aesthetical measurements are determined by Zipf’s law in an evolutionary environment. Arranging these voices together for producing a musical corpus can be considered as a search problem in the LPM outputs space of musical possibilities. On this account, the issues toward defining the search space for LPM is studied throughout this paper

    A Flexible Image Processing Framework for Vision-based Navigation Using Monocular Image Sensors

    Get PDF
    On-Orbit Servicing (OOS) encompasses all operations related to servicing satellites and performing other work on-orbit, such as reduction of space debris. Servicing satellites includes repairs, refueling, attitude control and other tasks, which may be needed to put a failed satellite back into working condition. A servicing satellite requires accurate position and orientation (pose) information about the target spacecraft. A large quantity of different sensor families is available to accommodate this need. However, when it comes to minimizing mass, space and power required for a sensor system, mostly monocular imaging sensors perform very well. A disadvantage is- when comparing to LIDAR sensors- that costly computations are needed to process the data of the sensor. The method presented in this paper is addressing these problems by aiming to implement three different design principles; First: keep the computational burden as low as possible. Second: utilize different algorithms and choose among them, depending on the situation, to retrieve the most stable results. Third: Stay modular and flexible. The software is designed primarily for utilization in On-Orbit Servicing tasks, where- for example- a servicer spacecraft approaches an uncooperative client spacecraft, which can not aid in the process in any way as it is assumed to be completely passive. Image processing is used for navigating to the client spacecraft. In this specific scenario, it is vital to obtain accurate distance and bearing information until, in the last few meters, all six degrees of freedom are needed to be known. The smaller the distance between the spacecraft, the more accurate pose estimates are required. The algorithms used here are tested and optimized on a sophisticated Rendezvous and Docking Simulation facility (European Proximity Operations Simulator- EPOS 2.0) in its second-generation form located at the German Space Operations Center (GSOC) in Weßling, Germany. This particular simulation environment is real-time capable and provides an interface to test sensor system hardware in closed loop configuration. The results from these tests are summarized in the paper as well. Finally, an outlook on future work is given, with the intention of providing some long-term goals as the paper is presenting a snapshot of ongoing, by far not yet completed work. Moreover, it serves as an overview of additions which can improve the presented method further

    Long-Range Navigation on Complex Networks using L\'evy Random Walks

    Full text link
    We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks, that is inspired by L\'evy random walks, generalizing previous navigation rules. We obtained exact expressions for the stationary probability distribution, the occupation probability, the mean first passage time, and the average time to reach a node on the network. We found that the long-range navigation using the L\'evy random walk strategy, compared with the normal random walk strategy, is more efficient at reducing the time to cover the network. The dynamical effect of using the L\'evy walk strategy is to transform a large-world network into a small world. Our exact results provide a general framework that connects two important fields: L\'evy navigation strategies and dynamics on complex networks.Comment: 6 pages, 3 figure
    • …
    corecore