17,625 research outputs found

    Deep SR-ITM: Joint Learning of Super-Resolution and Inverse Tone-Mapping for 4K UHD HDR Applications

    Full text link
    Recent modern displays are now able to render high dynamic range (HDR), high resolution (HR) videos of up to 8K UHD (Ultra High Definition). Consequently, UHD HDR broadcasting and streaming have emerged as high quality premium services. However, due to the lack of original UHD HDR video content, appropriate conversion technologies are urgently needed to transform the legacy low resolution (LR) standard dynamic range (SDR) videos into UHD HDR versions. In this paper, we propose a joint super-resolution (SR) and inverse tone-mapping (ITM) framework, called Deep SR-ITM, which learns the direct mapping from LR SDR video to their HR HDR version. Joint SR and ITM is an intricate task, where high frequency details must be restored for SR, jointly with the local contrast, for ITM. Our network is able to restore fine details by decomposing the input image and focusing on the separate base (low frequency) and detail (high frequency) layers. Moreover, the proposed modulation blocks apply location-variant operations to enhance local contrast. The Deep SR-ITM shows good subjective quality with increased contrast and details, outperforming the previous joint SR-ITM method.Comment: Accepted at ICCV 2019 (Oral

    Learning an Inverse Tone Mapping Network with a Generative Adversarial Regularizer

    Full text link
    Transferring a low-dynamic-range (LDR) image to a high-dynamic-range (HDR) image, which is the so-called inverse tone mapping (iTM), is an important imaging technique to improve visual effects of imaging devices. In this paper, we propose a novel deep learning-based iTM method, which learns an inverse tone mapping network with a generative adversarial regularizer. In the framework of alternating optimization, we learn a U-Net-based HDR image generator to transfer input LDR images to HDR ones, and a simple CNN-based discriminator to classify the real HDR images and the generated ones. Specifically, when learning the generator we consider the content-related loss and the generative adversarial regularizer jointly to improve the stability and the robustness of the generated HDR images. Using the learned generator as the proposed inverse tone mapping network, we achieve superior iTM results to the state-of-the-art methods consistently

    Fast Multi-Layer Laplacian Enhancement

    Full text link
    A novel, fast and practical way of enhancing images is introduced in this paper. Our approach builds on Laplacian operators of well-known edge-aware kernels, such as bilateral and nonlocal means, and extends these filter's capabilities to perform more effective and fast image smoothing, sharpening and tone manipulation. We propose an approximation of the Laplacian, which does not require normalization of the kernel weights. Multiple Laplacians of the affinity weights endow our method with progressive detail decomposition of the input image from fine to coarse scale. These image components are blended by a structure mask, which avoids noise/artifact magnification or detail loss in the output image. Contributions of the proposed method to existing image editing tools are: (1) Low computational and memory requirements, making it appropriate for mobile device implementations (e.g. as a finish step in a camera pipeline), (2) A range of filtering applications from detail enhancement to denoising with only a few control parameters, enabling the user to apply a combination of various (and even opposite) filtering effects

    Text2Light: Zero-Shot Text-Driven HDR Panorama Generation

    Full text link
    High-quality HDRIs(High Dynamic Range Images), typically HDR panoramas, are one of the most popular ways to create photorealistic lighting and 360-degree reflections of 3D scenes in graphics. Given the difficulty of capturing HDRIs, a versatile and controllable generative model is highly desired, where layman users can intuitively control the generation process. However, existing state-of-the-art methods still struggle to synthesize high-quality panoramas for complex scenes. In this work, we propose a zero-shot text-driven framework, Text2Light, to generate 4K+ resolution HDRIs without paired training data. Given a free-form text as the description of the scene, we synthesize the corresponding HDRI with two dedicated steps: 1) text-driven panorama generation in low dynamic range(LDR) and low resolution, and 2) super-resolution inverse tone mapping to scale up the LDR panorama both in resolution and dynamic range. Specifically, to achieve zero-shot text-driven panorama generation, we first build dual codebooks as the discrete representation for diverse environmental textures. Then, driven by the pre-trained CLIP model, a text-conditioned global sampler learns to sample holistic semantics from the global codebook according to the input text. Furthermore, a structure-aware local sampler learns to synthesize LDR panoramas patch-by-patch, guided by holistic semantics. To achieve super-resolution inverse tone mapping, we derive a continuous representation of 360-degree imaging from the LDR panorama as a set of structured latent codes anchored to the sphere. This continuous representation enables a versatile module to upscale the resolution and dynamic range simultaneously. Extensive experiments demonstrate the superior capability of Text2Light in generating high-quality HDR panoramas. In addition, we show the feasibility of our work in realistic rendering and immersive VR.Comment: SIGGRAPH Asia 2022; Project Page https://frozenburning.github.io/projects/text2light/ Codes are available at https://github.com/FrozenBurning/Text2Ligh

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    Learning High Dynamic Range from Outdoor Panoramas

    Full text link
    Outdoor lighting has extremely high dynamic range. This makes the process of capturing outdoor environment maps notoriously challenging since special equipment must be used. In this work, we propose an alternative approach. We first capture lighting with a regular, LDR omnidirectional camera, and aim to recover the HDR after the fact via a novel, learning-based inverse tonemapping method. We propose a deep autoencoder framework which regresses linear, high dynamic range data from non-linear, saturated, low dynamic range panoramas. We validate our method through a wide set of experiments on synthetic data, as well as on a novel dataset of real photographs with ground truth. Our approach finds applications in a variety of settings, ranging from outdoor light capture to image matching.Comment: 8 pages + 2 pages of citations, 10 figures. Accepted as an oral paper at ICCV 201

    Rendition: Reclaiming what a black box takes away

    Full text link
    The premise of our work is deceptively familiar: A black box f(⋅)f(\cdot) has altered an image x→f(x)\mathbf{x} \rightarrow f(\mathbf{x}). Recover the image x\mathbf{x}. This black box might be any number of simple or complicated things: a linear or non-linear filter, some app on your phone, etc. The latter is a good canonical example for the problem we address: Given only "the app" and an image produced by the app, find the image that was fed to the app. You can run the given image (or any other image) through the app as many times as you like, but you can not look inside the (code for the) app to see how it works. At first blush, the problem sounds a lot like a standard inverse problem, but it is not in the following sense: While we have access to the black box f(⋅)f(\cdot) and can run any image through it and observe the output, we do not know how the block box alters the image. Therefore we have no explicit form or model of f(⋅)f(\cdot). Nor are we necessarily interested in the internal workings of the black box. We are simply happy to reverse its effect on a particular image, to whatever extent possible. This is what we call the "rendition" (rather than restoration) problem, as it does not fit the mold of an inverse problem (blind or otherwise). We describe general conditions under which rendition is possible, and provide a remarkably simple algorithm that works for both contractive and expansive black box operators. The principal and novel take-away message from our work is this surprising fact: One simple algorithm can reliably undo a wide class of (not too violent) image distortions. A higher quality pdf of this paper is available at http://www.milanfar.or

    Exposure: A White-Box Photo Post-Processing Framework

    Full text link
    Retouching can significantly elevate the visual appeal of photos, but many casual photographers lack the expertise to do this well. To address this problem, previous works have proposed automatic retouching systems based on supervised learning from paired training images acquired before and after manual editing. As it is difficult for users to acquire paired images that reflect their retouching preferences, we present in this paper a deep learning approach that is instead trained on unpaired data, namely a set of photographs that exhibits a retouching style the user likes, which is much easier to collect. Our system is formulated using deep convolutional neural networks that learn to apply different retouching operations on an input image. Network training with respect to various types of edits is enabled by modeling these retouching operations in a unified manner as resolution-independent differentiable filters. To apply the filters in a proper sequence and with suitable parameters, we employ a deep reinforcement learning approach that learns to make decisions on what action to take next, given the current state of the image. In contrast to many deep learning systems, ours provides users with an understandable solution in the form of conventional retouching edits, rather than just a "black-box" result. Through quantitative comparisons and user studies, we show that this technique generates retouching results consistent with the provided photo set.Comment: ACM Transaction on Graphics (Accepted with minor revisions

    Generation of High Dynamic Range Illumination from a Single Image for the Enhancement of Undesirably Illuminated Images

    Full text link
    This paper presents an algorithm that enhances undesirably illuminated images by generating and fusing multi-level illuminations from a single image.The input image is first decomposed into illumination and reflectance components by using an edge-preserving smoothing filter. Then the reflectance component is scaled up to improve the image details in bright areas. The illumination component is scaled up and down to generate several illumination images that correspond to certain camera exposure values different from the original. The virtual multi-exposure illuminations are blended into an enhanced illumination, where we also propose a method to generate appropriate weight maps for the tone fusion. Finally, an enhanced image is obtained by multiplying the equalized illumination and enhanced reflectance. Experiments show that the proposed algorithm produces visually pleasing output and also yields comparable objective results to the conventional enhancement methods, while requiring modest computational loads

    Semi-Global Weighted Least Squares in Image Filtering

    Full text link
    Solving the global method of Weighted Least Squares (WLS) model in image filtering is both time- and memory-consuming. In this paper, we present an alternative approximation in a time- and memory- efficient manner which is denoted as Semi-Global Weighed Least Squares (SG-WLS). Instead of solving a large linear system, we propose to iteratively solve a sequence of subsystems which are one-dimensional WLS models. Although each subsystem is one-dimensional, it can take two-dimensional neighborhood information into account due to the proposed special neighborhood construction. We show such a desirable property makes our SG-WLS achieve close performance to the original two-dimensional WLS model but with much less time and memory cost. While previous related methods mainly focus on the 4-connected/8-connected neighborhood system, our SG-WLS can handle a more general and larger neighborhood system thanks to the proposed fast solution. We show such a generalization can achieve better performance than the 4-connected/8-connected neighborhood system in some applications. Our SG-WLS is ∼20\sim20 times faster than the WLS model. For an image of M×NM\times N, the memory cost of SG-WLS is at most at the magnitude of max{1M,1N}max\{\frac{1}{M}, \frac{1}{N}\} of that of the WLS model. We show the effectiveness and efficiency of our SG-WLS in a range of applications. The code is publicly available at: https://github.com/wliusjtu/Semi-Global-Weighted-Least-Squares-in-Image-Filtering.Comment: Appearing in Proc. Int. Conf.Computer Vision (ICCV), 201
    • …
    corecore