4,877 research outputs found

    A Framework for Interactive Teaching of Virtual Borders to Mobile Robots

    Full text link
    The increasing number of robots in home environments leads to an emerging coexistence between humans and robots. Robots undertake common tasks and support the residents in their everyday life. People appreciate the presence of robots in their environment as long as they keep the control over them. One important aspect is the control of a robot's workspace. Therefore, we introduce virtual borders to precisely and flexibly define the workspace of mobile robots. First, we propose a novel framework that allows a person to interactively restrict a mobile robot's workspace. To show the validity of this framework, a concrete implementation based on visual markers is implemented. Afterwards, the mobile robot is capable of performing its tasks while respecting the new virtual borders. The approach is accurate, flexible and less time consuming than explicit robot programming. Hence, even non-experts are able to teach virtual borders to their robots which is especially interesting in domains like vacuuming or service robots in home environments.Comment: 7 pages, 6 figure

    This Far, No Further: Introducing Virtual Borders to Mobile Robots Using a Laser Pointer

    Full text link
    We address the problem of controlling the workspace of a 3-DoF mobile robot. In a human-robot shared space, robots should navigate in a human-acceptable way according to the users' demands. For this purpose, we employ virtual borders, that are non-physical borders, to allow a user the restriction of the robot's workspace. To this end, we propose an interaction method based on a laser pointer to intuitively define virtual borders. This interaction method uses a previously developed framework based on robot guidance to change the robot's navigational behavior. Furthermore, we extend this framework to increase the flexibility by considering different types of virtual borders, i.e. polygons and curves separating an area. We evaluated our method with 15 non-expert users concerning correctness, accuracy and teaching time. The experimental results revealed a high accuracy and linear teaching time with respect to the border length while correctly incorporating the borders into the robot's navigational map. Finally, our user study showed that non-expert users can employ our interaction method.Comment: Accepted at 2019 Third IEEE International Conference on Robotic Computing (IRC), supplementary video: https://youtu.be/lKsGp8xtyI

    Virtual Borders: Accurate Definition of a Mobile Robot's Workspace Using Augmented Reality

    Full text link
    We address the problem of interactively controlling the workspace of a mobile robot to ensure a human-aware navigation. This is especially of relevance for non-expert users living in human-robot shared spaces, e.g. home environments, since they want to keep the control of their mobile robots, such as vacuum cleaning or companion robots. Therefore, we introduce virtual borders that are respected by a robot while performing its tasks. For this purpose, we employ a RGB-D Google Tango tablet as human-robot interface in combination with an augmented reality application to flexibly define virtual borders. We evaluated our system with 15 non-expert users concerning accuracy, teaching time and correctness and compared the results with other baseline methods based on visual markers and a laser pointer. The experimental results show that our method features an equally high accuracy while reducing the teaching time significantly compared to the baseline methods. This holds for different border lengths, shapes and variations in the teaching process. Finally, we demonstrated the correctness of the approach, i.e. the mobile robot changes its navigational behavior according to the user-defined virtual borders.Comment: Accepted on 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), supplementary video: https://youtu.be/oQO8sQ0JBR

    The Virtual University and Avatar Technology: E-learning Through Future Technology

    Get PDF
    E-learning gains increasingly importance in academic education. Beyond present distance learning technologies a new opportunity emerges by the use of advanced avatar technology. Virtual robots acting in an environment of a virtual campus offer opportunities of advanced learning experiences. Human Machine Interaction (HMI) and Artificial Intelligence (AI) can bridge time zones and ease professional constraints of mature students. Undergraduate students may use such technology to build up topics of their studies beyond taught lectures. Objectives of the paper are to research the options, extent and limitations of avatar technology for academic studies in under- and postgraduate courses and to discuss students' potential acceptance or rejection of interaction with AI. The research method is a case study based on Sir Tony Dyson's avatar technology iBot2000. Sir Tony is a worldwide acknowledged robot specialist, creator of Star Wars' R2D2, who developed in recent years the iBot2000 technology, intelligent avatars adaptable to different environments with the availability to speak up to eight different languages and capable to provide logic answers to questions asked. This technology underwent many prototypes with the latest specific goal to offer blended E-learning entering the field of the virtual 3-D university extending Web2.0 to Web3.0 (Dyson. 2009). Sir Tony included his vast experiences gained in his personal (teaching) work with children for which he received his knighthood. The data was mainly collected through interviews with Sir Tony Dyson, which helps discover the inventor’s view on why such technology is of advantage for academic studies. Based on interviews with Sir Tony, this research critically analyses the options, richness and restrictions, which avatar (iBot2000) technology may add to academic studies. The conclusion will discuss the opportunities, which avatar technology may be able to bring to learning and teaching activities, and the foreseeable limitations – the amount of resources required and the complexity to build a fully integrated virtual 3-D campus. Key Words: virtual learning, avatar technology, iBot2000, virtual universit

    Spatial Programming for Industrial Robots through Task Demonstration

    Get PDF
    We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks

    Digital Tools for Innovative Higher Education Teaching - A Scoping Review of Empirical Studies

    Get PDF
    Since the COVID-19 pandemic has outbursts, changes in the teaching process are observable. What was a temporary countermeasure against the pandemic is now considered a didactic tool. More and more teachers and entire higher education institutions decided to permanently implement digital tools or innovative teaching methods into the didactic process. The continuous development of technology fosters innovation in the teaching process. It allows teachers to use newer and newer teaching tools, better and better adapted to the real needs of students. The main goal of this article is to point out, by a scoping review of the papers published between 2020 and 2023, the digital tools used in the teaching process at the higher education level. The review focuses only on the original articles written in English, which present studies on implementing innovative digital teaching tools. The article is a form of a preliminary catalog of didactic tools used at the higher education level in the last three years, with their quantitative presentation. The tools have been categorized according to the technologies they use and then assigned to the scientific disciplines in accordance with the OECD classification in which they were used
    corecore