37,454 research outputs found

    Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources

    Get PDF
    Apache Calcite is a foundational software framework that provides query processing, optimization, and query language support to many popular open-source data processing systems such as Apache Hive, Apache Storm, Apache Flink, Druid, and MapD. Calcite's architecture consists of a modular and extensible query optimizer with hundreds of built-in optimization rules, a query processor capable of processing a variety of query languages, an adapter architecture designed for extensibility, and support for heterogeneous data models and stores (relational, semi-structured, streaming, and geospatial). This flexible, embeddable, and extensible architecture is what makes Calcite an attractive choice for adoption in big-data frameworks. It is an active project that continues to introduce support for the new types of data sources, query languages, and approaches to query processing and optimization.Comment: SIGMOD'1

    Separation Property for wB- and wS-regular Languages

    Full text link
    In this paper we show that {\omega}B- and {\omega}S-regular languages satisfy the following separation-type theorem If L1,L2 are disjoint languages of {\omega}-words both recognised by {\omega}B- (resp. {\omega}S)-automata then there exists an {\omega}-regular language Lsep that contains L1, and whose complement contains L2. In particular, if a language and its complement are recognised by {\omega}B- (resp. {\omega}S)-automata then the language is {\omega}-regular. The result is especially interesting because, as shown by Boja\'nczyk and Colcombet, {\omega}B-regular languages are complements of {\omega}S-regular languages. Therefore, the above theorem shows that these are two mutually dual classes that both have the separation property. Usually (e.g. in descriptive set theory or recursion theory) exactly one class from a pair C, Cc has the separation property. The proof technique reduces the separation property for {\omega}-word languages to profinite languages using Ramsey's theorem and topological methods. After that reduction, the analysis of the separation property in the profinite monoid is relatively simple. The whole construction is technically not complicated, moreover it seems to be quite extensible. The paper uses a framework for the analysis of B- and S-regular languages in the context of the profinite monoid that was proposed by Toru\'nczyk

    Extensible Technology-Agnostic Runtime Verification

    Full text link
    With numerous specialised technologies available to industry, it has become increasingly frequent for computer systems to be composed of heterogeneous components built over, and using, different technologies and languages. While this enables developers to use the appropriate technologies for specific contexts, it becomes more challenging to ensure the correctness of the overall system. In this paper we propose a framework to enable extensible technology agnostic runtime verification and we present an extension of polyLarva, a runtime-verification tool able to handle the monitoring of heterogeneous-component systems. The approach is then applied to a case study of a component-based artefact using different technologies, namely C and Java.Comment: In Proceedings FESCA 2013, arXiv:1302.478

    EVF: An Extensible and Expressive Visitor Framework for Programming Language Reuse (Artifact)

    Get PDF
    This artifact is based on EVF, an extensible and expressive Java visitor framework. EVF aims at reducing the effort involved in creation and reuse of programming languages. EVF an annotation processor that automatically generate boilerplate ASTs and AST for a given an Object Algebra interface. This artifact contains source code of the case study on "Types and Programming Languages", illustrating how effective EVF is in modularizing programming languages. There is also a microbenchmark in the artifact that shows that EVF has reasonable performance with respect to traditional visitors

    UML-F: A Modeling Language for Object-Oriented Frameworks

    Full text link
    The paper presents the essential features of a new member of the UML language family that supports working with object-oriented frameworks. This UML extension, called UML-F, allows the explicit representation of framework variation points. The paper discusses some of the relevant aspects of UML-F, which is based on standard UML extension mechanisms. A case study shows how it can be used to assist framework development. A discussion of additional tools for automating framework implementation and instantiation rounds out the paper.Comment: 22 pages, 10 figure
    • …
    corecore