30,085 research outputs found

    Cellular tracking in time-lapse phase contrast images

    Get PDF
    The quantitative analysis of live cells is a key issue in evaluating biological processes. The current clinical practice involves the application of a tedious and time consuming manual tracking procedure on large amount of data. As a result, automatic tracking systems are currently developed and evaluated. However, problems caused by cellular division, agglomeration, Brownian motion and topology changes are difficult issues that have to be accommodated by automatic tracking techniques. In this paper, we detail the development of a fully automated multi-target tracking system that is able to deal with Brownian motion and cellular division. During the tracking process our approach includes the neighbourhood relationship and motion history to enforce the cellular tracking continuity in the spatial and temporal domain. The experimental results reported in this paper indicate that our method is able to accurately track cellular structures in time-lapse data

    A video object generation tool allowing friendly user interaction

    Get PDF
    In this paper we describe an interactive video object segmentation tool developed in the framework of the ACTS-AC098 MOMUSYS project. The Video Object Generator with User Environment (VOGUE) combines three different sets of automatic and semi-automatic-tool (spatial segmentation, object tracking and temporal segmentation) with general purpose tools for user interaction. The result is an integrated environment allowing the user-assisted segmentation of any sort of video sequences in a friendly and efficient manner.Peer ReviewedPostprint (published version

    Dynamic Body VSLAM with Semantic Constraints

    Full text link
    Image based reconstruction of urban environments is a challenging problem that deals with optimization of large number of variables, and has several sources of errors like the presence of dynamic objects. Since most large scale approaches make the assumption of observing static scenes, dynamic objects are relegated to the noise modeling section of such systems. This is an approach of convenience since the RANSAC based framework used to compute most multiview geometric quantities for static scenes naturally confine dynamic objects to the class of outlier measurements. However, reconstructing dynamic objects along with the static environment helps us get a complete picture of an urban environment. Such understanding can then be used for important robotic tasks like path planning for autonomous navigation, obstacle tracking and avoidance, and other areas. In this paper, we propose a system for robust SLAM that works in both static and dynamic environments. To overcome the challenge of dynamic objects in the scene, we propose a new model to incorporate semantic constraints into the reconstruction algorithm. While some of these constraints are based on multi-layered dense CRFs trained over appearance as well as motion cues, other proposed constraints can be expressed as additional terms in the bundle adjustment optimization process that does iterative refinement of 3D structure and camera / object motion trajectories. We show results on the challenging KITTI urban dataset for accuracy of motion segmentation and reconstruction of the trajectory and shape of moving objects relative to ground truth. We are able to show average relative error reduction by a significant amount for moving object trajectory reconstruction relative to state-of-the-art methods like VISO 2, as well as standard bundle adjustment algorithms

    Image segmentation evaluation using an integrated framework

    Get PDF
    In this paper we present a general framework we have developed for running and evaluating automatic image and video segmentation algorithms. This framework was designed to allow effortless integration of existing and forthcoming image segmentation algorithms, and allows researchers to focus more on the development and evaluation of segmentation methods, relying on the framework for encoding/decoding and visualization. We then utilize this framework to automatically evaluate four distinct segmentation algorithms, and present and discuss the results and statistical findings of the experiment

    A framework for evaluating stereo-based pedestrian detection techniques

    Get PDF
    Automated pedestrian detection, counting, and tracking have received significant attention in the computer vision community of late. As such, a variety of techniques have been investigated using both traditional 2-D computer vision techniques and, more recently, 3-D stereo information. However, to date, a quantitative assessment of the performance of stereo-based pedestrian detection has been problematic, mainly due to the lack of standard stereo-based test data and an agreed methodology for carrying out the evaluation. This has forced researchers into making subjective comparisons between competing approaches. In this paper, we propose a framework for the quantitative evaluation of a short-baseline stereo-based pedestrian detection system. We provide freely available synthetic and real-world test data and recommend a set of evaluation metrics. This allows researchers to benchmark systems, not only with respect to other stereo-based approaches, but also with more traditional 2-D approaches. In order to illustrate its usefulness, we demonstrate the application of this framework to evaluate our own recently proposed technique for pedestrian detection and tracking

    Learning Articulated Motions From Visual Demonstration

    Full text link
    Many functional elements of human homes and workplaces consist of rigid components which are connected through one or more sliding or rotating linkages. Examples include doors and drawers of cabinets and appliances; laptops; and swivel office chairs. A robotic mobile manipulator would benefit from the ability to acquire kinematic models of such objects from observation. This paper describes a method by which a robot can acquire an object model by capturing depth imagery of the object as a human moves it through its range of motion. We envision that in future, a machine newly introduced to an environment could be shown by its human user the articulated objects particular to that environment, inferring from these "visual demonstrations" enough information to actuate each object independently of the user. Our method employs sparse (markerless) feature tracking, motion segmentation, component pose estimation, and articulation learning; it does not require prior object models. Using the method, a robot can observe an object being exercised, infer a kinematic model incorporating rigid, prismatic and revolute joints, then use the model to predict the object's motion from a novel vantage point. We evaluate the method's performance, and compare it to that of a previously published technique, for a variety of household objects.Comment: Published in Robotics: Science and Systems X, Berkeley, CA. ISBN: 978-0-9923747-0-
    corecore