2,110 research outputs found

    Automatic Verification of Message-Based Device Drivers

    Full text link
    We develop a practical solution to the problem of automatic verification of the interface between device drivers and the OS. Our solution relies on a combination of improved driver architecture and verification tools. It supports drivers written in C and can be implemented in any existing OS, which sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation shows that this methodology amplifies the power of existing verification tools in detecting driver bugs, making it possible to verify properties beyond the reach of traditional techniques.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Facilitating High Performance Code Parallelization

    Get PDF
    With the surge of social media on one hand and the ease of obtaining information due to cheap sensing devices and open source APIs on the other hand, the amount of data that can be processed is as well vastly increasing. In addition, the world of computing has recently been witnessing a growing shift towards massively parallel distributed systems due to the increasing importance of transforming data into knowledge in today’s data-driven world. At the core of data analysis for all sorts of applications lies pattern matching. Therefore, parallelizing pattern matching algorithms should be made efficient in order to cater to this ever-increasing abundance of data. We propose a method that automatically detects a user’s single threaded function call to search for a pattern using Java’s standard regular expression library, and replaces it with our own data parallel implementation using Java bytecode injection. Our approach facilitates parallel processing on different platforms consisting of shared memory systems (using multithreading and NVIDIA GPUs) and distributed systems (using MPI and Hadoop). The major contributions of our implementation consist of reducing the execution time while at the same time being transparent to the user. In addition to that, and in the same spirit of facilitating high performance code parallelization, we present a tool that automatically generates Spark Java code from minimal user-supplied inputs. Spark has emerged as the tool of choice for efficient big data analysis. However, users still have to learn the complicated Spark API in order to write even a simple application. Our tool is easy to use, interactive and offers Spark’s native Java API performance. To the best of our knowledge and until the time of this writing, such a tool has not been yet implemented

    Distributed-Memory Breadth-First Search on Massive Graphs

    Full text link
    This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.Comment: arXiv admin note: text overlap with arXiv:1104.451

    High level synthesis of RDF queries for graph analytics

    Get PDF
    In this paper we present a set of techniques that enable the synthesis of efficient custom accelerators for memory intensive, irregular applications. To address the challenges of irregular applications (large memory footprint, unpredictable fine-grained data accesses, and high synchronization intensity), and exploit their opportunities (thread level parallelism, memory level parallelism), we propose a novel accelerator design that employs an adaptive and Distributed Controller (DC) architecture, and a Memory Interface Controller (MIC) that supports concurrent and atomic memory operations on a multi-ported/multi-banked shared memory. Among the multitude of algorithms that may benefit from our solution, we focus on the acceleration of graph analytics applications and, in particular, on the synthesis of SPARQL queries on Resource Description Framework (RDF) databases. We achieve this objective by incorporating the synthesis techniques into Bambu, an Open Source high-level synthesis tools, and interfacing it with GEMS, the Graph database Engine for Multithreaded Systems. The GEMS' front-end generates optimized C implementations of the input queries, modeled as graph pattern matching algorithms, which are then automatically synthesized by Bambu. We validate our approach by synthesizing several SPARQL queries from the Lehigh University Benchmark (LUBM)
    corecore