32,526 research outputs found

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Managing the Evolution of Dependability Cases for Systems of Systems

    Get PDF
    . Dependability is a composite property consisting of attributes such as reliability, availability, safety and security. The achievement of these attri~utes is often essential for the operational success of systems undertaking critical and complex tasks. .Assurance that the fmal system will demonstrate the required dependability qualities, can be crucial to the acceptance of the system into service. Safety cases are a well established c,oncept used to establish assurance about the safety properties of a system. However, safety cases focus only on one attribute of dependability. The principles and processes ofcreating an integrated dependability case - that assures all aspects of dependable system behaviour - are less well understood. A number of challenges are faced when attempting to support dependability case development. These include the systematic elicitation of dependability goals, the management and justification of trade-offs, and the evolution of multi-attribute arguments in step with the design process. This thesis addresses these challenges by defming a rigorous framework, accompanied by a set of methods, for establishing dependability cases. Firstly, a method for eliciting dependability requirements is defmed by extending existing safety deviational analysis techniques. Secondly, a method for systematically identifying and managing justified trade-offs is presented. Thirdly, the thesis describes the co-evolution of depen~bility . case arguments alongside system development - using a dependability case architecture that corresponds to system structures. Finally, the thesis unifies these contributions by defming a metamodel that captures and interrelates the 'concepts underlying the proposed methods. Evaluation of the work is presented by means of peer review, pilot studies and industrial examples

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Self-supervising BPEL Processes

    Get PDF
    Service compositions suffer changes in their partner services. Even if the composition does not change, its behavior may evolve over time and become incorrect. Such changes cannot be fully foreseen through prerelease validation, but impose a shift in the quality assessment activities. Provided functionality and quality of service must be continuously probed while the application executes, and the application itself must be able to take corrective actions to preserve its dependability and robustness. We propose the idea of self-supervising BPEL processes, that is, special-purpose compositions that assess their behavior and react through user-defined rules. Supervision consists of monitoring and recovery. The former checks the system's execution to see whether everything is proceeding as planned, while the latter attempts to fix any anomalies. The paper introduces two languages for defining monitoring and recovery and explains how to use them to enrich BPEL processes with self-supervision capabilities. Supervision is treated as a cross-cutting concern that is only blended at runtime, allowing different stakeholders to adopt different strategies with no impact on the actual business logic. The paper also presents a supervision-aware runtime framework for executing the enriched processes, and briefly discusses the results of in-lab experiments and of a first evaluation with industrial partners

    An Assurance Framework for Independent Co-assurance of Safety and Security

    Get PDF
    Integrated safety and security assurance for complex systems is difficult for many technical and socio-technical reasons such as mismatched processes, inadequate information, differing use of language and philosophies, etc.. Many co-assurance techniques rely on disregarding some of these challenges in order to present a unified methodology. Even with this simplification, no methodology has been widely adopted primarily because this approach is unrealistic when met with the complexity of real-world system development. This paper presents an alternate approach by providing a Safety-Security Assurance Framework (SSAF) based on a core set of assurance principles. This is done so that safety and security can be co-assured independently, as opposed to unified co-assurance which has been shown to have significant drawbacks. This also allows for separate processes and expertise from practitioners in each domain. With this structure, the focus is shifted from simplified unification to integration through exchanging the correct information at the right time using synchronisation activities

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling
    • …
    corecore