631 research outputs found

    A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks

    Get PDF
    Distributed Denial of Service (DDoS) flooding attacks are one of the biggest concerns for security professionals. DDoS flooding attacks are typically explicit attempts to disrupt legitimate users' access to services. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies (i.e., Botnets). Once an attack army has been set up, an attacker can invoke a coordinated, large-scale attack against one or more targets. Developing a comprehensive defense mechanism against identified and anticipated DDoS flooding attacks is a desired goal of the intrusion detection and prevention research community. However, the development of such a mechanism requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various DDoS flooding attacks. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. We categorize the DDoS flooding attacks and classify existing countermeasures based on where and when they prevent, detect, and respond to the DDoS flooding attacks. Moreover, we highlight the need for a comprehensive distributed and collaborative defense approach. Our primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack. © 1998-2012 IEEE

    Efficient trapdoor-based client puzzle system against DoS attacks

    Get PDF
    Denial of service (DoS) and distributed denial of service (DDoS) are serious threats to computer networks. DoS and DDoS attacks aim to shut down a target server by depleting its resources and rendering it incapable of offering stable and integrated service to legitimate clients. Preventing DoS and DDoS attacks is a difficult task. A promising countermeasure against DoS attacks is the Client Puzzle method, which nevertheless faces a number of challenges, such as the complexity of puzzle construction and solution verification. Our research focuses on exploring novel puzzle constructions to satisfy the high demands of DoS defence in practice. In this thesis, we first identify the underlying weaknesses of existing client puzzles. To mitigate these vulnerabilities, we recommend the necessary requirements for good client puzzles. Based on this, we propose a new model for puzzle distribution, called the Trapdoor-based Client Puzzle System (TCPS). Two specific schemes are presented to construct puzzles within TCPS. We depict these two schemes, where each trapdoor algorithm is applied respectively. Both schemes have two distinct features: the computational overheads are low, and the difficulty level of puzzles is measurable. Moreover, both puzzle schemes are provably secure under traditional hard problems in mathematics. Our contribution to client puzzle defence against DoS attacks can be summarised as follows: * Identify the shortcomings of existing client puzzles. * Recommend the requirements of good client puzzles. * Formally define the Trapdoor-based Client Puzzle System, along with strict security conditions. * Propose a client puzzle scheme whose security is based on the RSA Assumption. Effectiveness and security are analysed and proven. * Propose a second client puzzle scheme whose security is based on the Discrete Logarithm Problem (DLP). Similarly, effectiveness and security are also analysed. * Provide a possible configuration for system parameters. * Discuss further possible attacks and their solutions. As our research is carried out in DoS attack scenarios, we also introduce this technical background before our achievements are presented

    Adding Salt to Pepper: A Structured Security Assessment over a Humanoid Robot

    Get PDF
    The rise of connectivity, digitalization, robotics, and artificial intelligence (AI) is rapidly changing our society and shaping its future development. During this technological and societal revolution, security has been persistently neglected, yet a hacked robot can act as an insider threat in organizations, industries, public spaces, and private homes. In this paper, we perform a structured security assessment of Pepper, a commercial humanoid robot. Our analysis, composed by an automated and a manual part, points out a relevant number of security flaws that can be used to take over and command the robot. Furthermore, we suggest how these issues could be fixed, thus, avoided in the future. The very final aim of this work is to push the rise of the security level of IoT products before they are sold on the public market.Comment: 8 pages, 3 figures, 4 table

    Network-Aware AutoML Framework for Software-Defined Sensor Networks

    Full text link
    As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays

    Detailed Review on The Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks in Software Defined Networks (SDNs) and Defense Strategies

    Get PDF
    The development of Software Defined Networking (SDN) has altered the landscape of computer networking in recent years. Its scalable architecture has become a blueprint for the design of several advanced future networks. To achieve improve and efficient monitoring, control and management capabilities of the network, software defined networks differentiate or decouple the control logic from the data forwarding plane. As a result, logical control is centralized solely in the controller. Due to the centralized nature, SDNs are exposed to several vulnerabilities such as Spoofing, Flooding, and primarily Denial of Service (DoS) and Distributed Denial of Service (DDoS) among other attacks. In effect, the performance of SDN degrades based on these attacks. This paper presents a comprehensive review of several DoS and DDoS defense/mitigation strategies and classifies them into distinct classes with regards to the methodologies employed. Furthermore, suggestions were made to enhance current mitigation strategies accordingly

    5G Security Challenges and Solutions: A Review by OSI Layers

    Get PDF
    The Fifth Generation of Communication Networks (5G) envisions a broader range of servicescompared to previous generations, supporting an increased number of use cases and applications. Thebroader application domain leads to increase in consumer use and, in turn, increased hacker activity. Dueto this chain of events, strong and efficient security measures are required to create a secure and trustedenvironment for users. In this paper, we provide an objective overview of5G security issues and theexisting and newly proposed technologies designed to secure the5G environment. We categorize securitytechnologies usingOpen Systems Interconnection (OSI)layers and, for each layer, we discuss vulnerabilities,threats, security solutions, challenges, gaps and open research issues. While we discuss all sevenOSIlayers, the most interesting findings are in layer one, the physical layer. In fact, compared to other layers,the physical layer between the base stations and users’ device presents increased opportunities for attackssuch as eavesdropping and data fabrication. However, no singleOSI layer can stand on its own to provideproper security. All layers in the5G must work together, providing their own unique technology in an effortto ensure security and integrity for5G data
    • …
    corecore