918 research outputs found

    A framework for assuring conformance of cloud-based email at higher education institutions

    Get PDF
    Cloud computing is a relatively immature computing paradigm that could significantly benefit users. Cloud computing solutions are often associated with potential benefits such as cost reduction, less administrative hassle, flexibility and scalability. For organisations to realize such potential benefits, cloud computing solutions need to be chosen, implemented, managed and governed in a way that is secure, compliant with internal and external requirements and indicative of due diligence. This can be a challenge, given the many concerns and risks commonly associated with cloud computing solutions. One cloud computing solution that is being widely adopted around the world is cloud-based email. One of the foremost adopters of this cloud computing solution is higher education institutions. These higher education institutions stand to benefit greatly from using such services. Cloud-based email can be provisioned to staff and students at these institutions for free. Additionally, cloud service providers (CSPs) are able to provide a better email service than some higher education institutions would be able to provide if they were required to do so in-house. CSPs often provide larger inboxes and many extra services with cloud-based email. Cloud-based email is, therefore, clearly an example of a cloud computing solution that has the potential to benefit organisations. There are however, risks and challenges associated with the use of this cloud computing solution. Two of these challenges relate to ensuring conformance to internal and external (legal, regulatory and contractual obligations) requirements and to providing a mechanism of assuring that cloud-based email related activities are sound. The lack of structured guidelines for assuring the conformance of cloud-based email is putting this service at risk at higher education institutions in South Africa. This work addresses this problem by promoting a best practice based approach to assuring the conformance of cloud-based email at higher education institutions. To accomplish this, components of applicable standards and best practice guidelines for IT governance, IT assurance and IT conformance are used to construct a framework for assuring the conformance of cloud-based email. The framework is designed and verified using sound design science principles. The utility and value of the framework has been demonstrated at a higher education institution in South Africa. This framework can be used to assist higher education institutions to demonstrate due diligence in assuring that they conform to legal and best practice requirements for the management and governance of cloud-based email. This is a significant contribution in the relatively new field of cloud computing governance

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Framework for Security Transparency in Cloud Computing

    Get PDF
    The migration of sensitive data and applications from the on-premise data centre to a cloud environment increases cyber risks to users, mainly because the cloud environment is managed and maintained by a third-party. In particular, the partial surrender of sensitive data and application to a cloud environment creates numerous concerns that are related to a lack of security transparency. Security transparency involves the disclosure of information by cloud service providers about the security measures being put in place to protect assets and meet the expectations of customers. It establishes trust in service relationship between cloud service providers and customers, and without evidence of continuous transparency, trust and confidence are affected and are likely to hinder extensive usage of cloud services. Also, insufficient security transparency is considered as an added level of risk and increases the difficulty of demonstrating conformance to customer requirements and ensuring that the cloud service providers adequately implement security obligations. The research community have acknowledged the pressing need to address security transparency concerns, and although technical aspects for ensuring security and privacy have been researched widely, the focus on security transparency is still scarce. The relatively few literature mostly approach the issue of security transparency from cloud providers’ perspective, while other works have contributed feasible techniques for comparison and selection of cloud service providers using metrics such as transparency and trustworthiness. However, there is still a shortage of research that focuses on improving security transparency from cloud users’ point of view. In particular, there is still a gap in the literature that (i) dissects security transparency from the lens of conceptual knowledge up to implementation from organizational and technical perspectives and; (ii) support continuous transparency by enabling the vetting and probing of cloud service providers’ conformity to specific customer requirements. The significant growth in moving business to the cloud – due to its scalability and perceived effectiveness – underlines the dire need for research in this area. This thesis presents a framework that comprises the core conceptual elements that constitute security transparency in cloud computing. It contributes to the knowledge domain of security transparency in cloud computing by proposing the following. Firstly, the research analyses the basics of cloud security transparency by exploring the notion and foundational concepts that constitute security transparency. Secondly, it proposes a framework which integrates various concepts from requirement engineering domain and an accompanying process that could be followed to implement the framework. The framework and its process provide an essential set of conceptual ideas, activities and steps that can be followed at an organizational level to attain security transparency, which are based on the principles of industry standards and best practices. Thirdly, for ensuring continuous transparency, the thesis proposes an essential tool that supports the collection and assessment of evidence from cloud providers, including the establishment of remedial actions for redressing deficiencies in cloud provider practices. The tool serves as a supplementary component of the proposed framework that enables continuous inspection of how predefined customer requirements are being satisfied. The thesis also validates the proposed security transparency framework and tool in terms of validity, applicability, adaptability, and acceptability using two different case studies. Feedbacks are collected from stakeholders and analysed using essential criteria such as ease of use, relevance, usability, etc. The result of the analysis illustrates the validity and acceptability of both the framework and tool in enhancing security transparency in a real-world environment

    The Value of User-Visible Internet Cryptography

    Full text link
    Cryptographic mechanisms are used in a wide range of applications, including email clients, web browsers, document and asset management systems, where typical users are not cryptography experts. A number of empirical studies have demonstrated that explicit, user-visible cryptographic mechanisms are not widely used by non-expert users, and as a result arguments have been made that cryptographic mechanisms need to be better hidden or embedded in end-user processes and tools. Other mechanisms, such as HTTPS, have cryptography built-in and only become visible to the user when a dialogue appears due to a (potential) problem. This paper surveys deployed and potential technologies in use, examines the social and legal context of broad classes of users, and from there, assesses the value and issues for those users

    NEW PERSPECTIVES ON THE PRIORITIES AND CHALLENGES OF THE INTERNAL AUDIT FUNCTION

    Get PDF
    In recent years, in the context of an increasingly dynamic economic environment, internal audit function knows an ascending trajectory as a consequence of the qualitative changes recorded following the application of a methodological and procedural framework appropriate to this activity. The present research highlights the priorities and the current challenges that the internal audit function faces in the Romanian space, but also worldwide faced in terms of expanding roles, emergence of new risks, grater stakeholder scrutiny and resourcing pressures. This scientific approach is made possible by using the information provided by the Institute of Internal Auditors through the Research Foundation of it, focused on Global Internal Audit Common Body of Knowledge (CBOK) 2015 Practitioner Survey in order to achieve a global perspective and a better understanding of stakeholders’ expectations of internal audit’ s purpose, function and performance and data documented following the opinion surveys of internal auditors conducted by KMPG and other specialist in the field - Deloitte, Protiviti. JEL Classification: M4

    Implementation of web-based application for self assessment of professional qualifications.

    Get PDF
    Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2019.This thesis explores self-assessment of professional qualifications in the Information and Communications Technology (ICT) sector, aiming to introduce improvements with the implementation of a new web-based application. The outcome of the research indicates applications’ functionality that provide adequacy in skills matching and job matching, however there is a gap in the verification of the employability level, as a unique characteristic that may enable professionals to compare their selves with others. More specifically, the exact point of interest is to enable professionals matching their potential for employment, against ICT professionals that hold roles that they are interested, per geographic region. This thesis focuses in the utilization of such a functionality within a web application, and has clear benefits and implementation difficulties. This is considered as a major problem solving functionality, as it serves to rate professionals, following a rating method developed similar to the ratings provided by financial organizations that verify creditworthiness

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance
    corecore