8,563 research outputs found

    Novel framework of retaining maximum data quality and energy efficiency in reconfigurable wireless sensor network

    Get PDF
    There are various unseen and unpredictable networking states in Wireless Sensor Network (WSN) that adversely affect the aggregated data quality. After reviewing the existing approaches of data quality in WSN, it was found that the solutions are quite symptomatic and they are applicable only in a static environment; however their successful applicability on dynamic and upcoming reconfigurable network is still a big question. Moreover, data quality directly affects energy conservation among the nodes. Therefore, the proposed system introduces a simple and novel framework that jointly addresses the data quality and energy efficiency using probability-based design approach. Using a simplified analytical methodology, the proposed system offers solution in the form of selection transmission of an aggergated data on the basis of message priority in order to offer higher data utilization factor. The study outcome shows proposed system offers a good balance between data quality and energy efficiency in contrast to existing system

    Detecting malicious data injections in event detection wireless sensor networks

    Get PDF

    Socionomic modelling in wireless sensor networks

    Full text link
    The performance and efficiency of a Wireless Sensor Network (WSN) is typically subject to techniques used in data routing, clustering, and localization. Being primarily driven by resource constraints, a Socionomic model has been formulated to optimize resource usage and boost collaboration among sensor nodes. In this paper, we present several experimental results to ascertain the underlying philosophy of the Socionomic model for improving network lifetime of resource constrained devices - such as, sensor nodes

    CAS-CNN: A Deep Convolutional Neural Network for Image Compression Artifact Suppression

    Get PDF
    Lossy image compression algorithms are pervasively used to reduce the size of images transmitted over the web and recorded on data storage media. However, we pay for their high compression rate with visual artifacts degrading the user experience. Deep convolutional neural networks have become a widespread tool to address high-level computer vision tasks very successfully. Recently, they have found their way into the areas of low-level computer vision and image processing to solve regression problems mostly with relatively shallow networks. We present a novel 12-layer deep convolutional network for image compression artifact suppression with hierarchical skip connections and a multi-scale loss function. We achieve a boost of up to 1.79 dB in PSNR over ordinary JPEG and an improvement of up to 0.36 dB over the best previous ConvNet result. We show that a network trained for a specific quality factor (QF) is resilient to the QF used to compress the input image - a single network trained for QF 60 provides a PSNR gain of more than 1.5 dB over the wide QF range from 40 to 76.Comment: 8 page

    Fuzzy TOPSIS-based Secure Neighbor Discovery Mechanism for Improving Reliable Data Dissemination in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) being an indispensable entity of the Internet of Things (IoT) are found to be more and more widely utilized for the rapid advent of IoT environment. The reliability of data dissemination in the IoT environment completely depends on the secure neighbor discovery mechanism that are utilized for effective and efficient communication among the sensor nodes. Secure neighbor discovery mechanisms that significantly determine trustworthy sensor nodes are essential for maintaining potential connectivity and sustaining reliable data delivery in the energy-constrained self organizing WSN. In this paper, Fuzzy Technique of Order Preference Similarity to the Ideal Solution (TOPSIS)-based Secure Neighbor Discovery Mechanism (FTOPSIS-SNDM) is proposed for estimating the trust of each sensor node in the established routing path for the objective of enhancing reliable data delivery in WSNs. This proposed FTOPSIS-SNDM is proposed as an attempt to integrate the merits of Fuzzy Set Theory (FST) and TOPSIS-based Multi-criteria Decision Making (MCDM) approach, since the discovery of secure neighbors involves the exchange of imprecise data and uncertain behavior of sensor nodes. This secure neighbor is also influenced by the factors of packet forwarding potential, delay, distance from the Base Station (BS) and residual energy, which in turn depends on multiple constraints that could be possibly included into the process of secure neighbor discovery. The simulation investigations of the proposed FTOPSIS-SNDM confirmed its predominance over the benchmarked approaches in terms of throughput, energy consumption, network latency, communication overhead for varying number of genuine and malicious neighboring sensor nodes in network
    • …
    corecore