138 research outputs found

    A Graphical Approach to Examining Classical Extremum Seeking Using Bifurcation Analysis

    Get PDF

    Online Optimization of LTI Systems Under Persistent Attacks: Stability, Tracking, and Robustness

    Full text link
    We study the stability properties of the interconnection of an LTI dynamical plant and a feedback controller that generates control signals that are compromised by a malicious attacker. We consider two classes of controllers: a static output-feedback controller, and a dynamical gradient-flow controller that seeks to steer the output of the plant towards the solution of a convex optimization problem. We analyze the stability of the closed-loop system under a class of switching attacks that persistently modify the control inputs generated by the controllers. The stability analysis leverages the framework of hybrid dynamical systems, Lyapunov-based arguments for switching systems with unstable modes, and singular perturbation theory. Our results reveal that under a suitable time-scale separation, the stability of the interconnected system can be preserved when the attack occurs with "sufficiently low frequency" in any bounded time interval. We present simulation results in a power-grid example that corroborate the technical findings

    Extremum Seeking Approach for Nonholonomic Systems with Multiple Time Scale Dynamics

    Get PDF
    In this paper, a class of nonlinear driftless control-affine systems satisfying the bracket generating condition is considered. A gradient-free optimization algorithm is developed for the minimization of a cost function along the trajectories of the controlled system. The algorithm comprises an approximation scheme with fast oscillating controls for the nonholonomic dynamics and a model-free extremum seeking component with respect to the output measurements. Exponential convergence of the trajectories to an arbitrary neighborhood of the optimal point is established under suitable assumptions on time scale parameters of the extended system. The proposed algorithm is tested numerically with the Brockett integrator for different choices of generating functions.Comment: This is the author's version of the manuscript accepted for publication in the Proceedings of The 21st IFAC World Congress 2020 (IFAC 2020

    Singularly Perturbed Stochastic Hybrid Systems: Stability and Recurrence via Composite Nonsmooth Foster Functions

    Full text link
    We introduce new sufficient conditions for verifying stability and recurrence properties in singularly perturbed stochastic hybrid dynamical systems. Specifically, we focus on hybrid systems with deterministic continuous-time dynamics that exhibit multiple time scales and are modeled by constrained differential inclusions, as well as discrete-time dynamics modeled by constrained difference inclusions with random inputs. By assuming regularity and causality of the dynamics and their solutions, respectively, we propose a suitable class of composite nonsmooth Lagrange-Foster and Lyapunov-Foster functions that can certify stability and recurrence using simpler functions related to the slow and fast dynamics of the system. We establish the stability properties with respect to compact sets, while the recurrence properties are studied only for open sets
    corecore