6,659 research outputs found

    Agents and E-commerce: Beyond Automation

    Get PDF
    The fast-growing information and communication technologies have shifted the contemporary commerce in both its information and market spaces. Businesses demand a new generation of agile and adaptive commerce systems. Towards this end, software agents, a type of autonomous artifacts, have been viewed as a promising solution. They have been taking an increasingly important part in facilitating e-commerce operations in the last two decades. This article presents a systematized overview of the diversity of agent applications in commerce. The paper argues that agents start playing more substantial role in determining social affairs. They also have a strong potential to be used to build the future highly responsive and smart e-commerce systems. The opportunities and challenges presented by proliferation of agent technologies in e-commerce necessitate the development of insights into their place in information systems research, as well as practical implications for the management

    Adaptive shared control system

    Get PDF

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    I Get by With a Little Help From My Bots: Implications of Machine Agents in the Context of Social Support

    Get PDF
    In this manuscript we discuss the increasing use of machine agents as potential sources of support for humans. Continued examination of the use of machine agents, particularly chatbots (or “bots”) for support is crucial as more supportive interactions occur with these technologies. Building off extant research on supportive communication, this manuscript reviews research that has implications for bots as support providers. At the culmination of the literature review, several propositions regarding how factors of technological efficacy, problem severity, perceived stigma, and humanness affect the process of support are proposed. By reviewing relevant studies, we integrate research on human-machine and supportive communication to organize, extend, and provide a foundation for the growing body of work on machine agents for support

    Design behaviors : programming the material world for responsive architecture

    Get PDF
    The advances of material science, coupled with computation and digital technologies, and applied to the architectural discipline have brought to life unprecedented possibilities for the design and making of responsive, collectively created and intelligent environments. Over the last two decades, research and applications of novel active materials, together with digital technologies such as Ubiquitous Computing, Human-Computer Interaction, and Artificial Intelligence, have introduced a model of Materially Responsive Architecture that presents unique possibilities for designing novel performances and behaviors of the architectural Beyond the use of mechanical systems, sensors, actuators or wires, often plugged into traditional materials to animate space, this dissertation proves that matter itself, can be the agent to achieve monitoring, reaction or adaptation with no need of any additional mechanics, electrical or motorized systems. Materials, therefore, become bits and information uniting with the digital world, while computational processes, such as algorithmic control, circular feedback, input or output, both drive and are driven by the morphogenetic capacities of matter, uniting, therefore, with the material world. Through the applications and implications of Materially Responsive Architecture we are crossing a threshold in design where physicality follows and reveals information through time and through dynamic configurations. Design is not limited to a finalised form but rather associated to a performance, where the final formal outcome consists in a series of animated and organic topologies rather than static geometries and structures. This new paradigm, is referred to, in this thesis, as the Design Behaviors paradigm (in the double sense of "behaviors of design" and "designing behaviors"), and is characterized by unique exchanges and dialogues between users and the environment, facilitated by the conjunction of human, material and computational intelligence. Buildings, objects and spaces are able to reconfigure themselves, in both atomic and macro scale, to support environmental changes and users' needs, behavioral and occupational patterns. At the same time the Design Behaviors paradigm places not only matter and the environment at the center of design and morphogenesis, but also the users, that become active participants of their built environment and play the final creative role. This paradigm shift, boosts new relations among the human's perception and body and the inhabited space. The new design paradigm is also a new cultural one, in which statics, repetition and Cartesian grids, traditionally related with safety, orientation and comfort, give way to motion, unpredictability and organic principles of evolution. Materially Responsive Architecture and the Design Behaviors paradigm define uniquely enhanced "environments" and "ecologies" where human, nature, artifice and technology collectively and evolutionally co-exist within a framework of increased consciousness and awareness. This thesis argues that, while there is no doubt that our future cities will consist in an extensive layer of distributed sensors, actuators and digital interfaces, they will also consist in an additional layer of novel materials, that are dynamic and soft, rather than rigid and hard, able to sense as sensors, actuate as motors, and be programmed as a software. The new materiality of our cities relies on the advances of material science, coupled with the cybernetic and computational power, and can be actuated by the environment to change states (Re-Active Matter), can be controlled by the users to respond (Co-Active Matter), and eventually can be designed and programmed to learn and evolve as living organisms do (Self-Active Matter). The physical space of the city is, thus, the seamless intertwining of digital and material content, becoming an active agent in the dynamic relationship between the environment and humans.Los avances en la ciencia de los materiales, junto con la computación y las tecnologías digitales, y aplicados a la disciplina arquitectónica, han dado vida a posibilidades sin precedentes para el diseño y la realización de entornos responsivos, inteligentes y creados de forma colectiva. En las últimas dos décadas, la investigación y aplicación de nuevos materiales activos junto con tecnologías digitales como la Computación Ubicua, la Interacción Hombre-Ordenador y la Inteligencia Artificial, han introducido el modelo de Materially Responsive Architecture (Arquitectura Materialmente Responsiva), que presenta posibilidades únicas para el diseño de nuevas actuaciones y comportamientos del espacio arquitectónico. Más allá del uso de sistemas mecánicos, sensores, o motores, a menudo conectados a materiales tradicionales para activar el espacio, esta disertación demuestra que la materia en sí misma puede ser el agente que consiga monitoreo o reactividad sin necesidad de añadir ningún sistema mecánico o eléctrico. Los materiales, en este caso, se convierten en bits e información fundiéndose con el mundo digital, mientras que los procesos computacionales, como el feedback circular y el input o output, a la vez impulsan y son impulsados por la capacidad morfogenética de la materia, uniéndose, por lo tanto, con el mundo material. A través de las aplicaciones y las implicaciones de la Materially Responsive Architecture, estamos cruzando un umbral en el diseño donde el mundo físico sigue y revela información a través de configuraciones dinámicas en el tiempo. El diseño no se limita a una forma finalizada, sino se relaciona a una performance, donde el resultado formal final consiste en una serie de topologías orgánicas y animadas en lugar de estructuras y geometrías estáticas. En esta tesis doctoral, este nuevo paradigma se denomina paradigma de Design Behaviours (en el doble sentido de "comportamientos de diseño" y de "diseño de comportamientos") y se caracteriza por intercambios únicos entre el usuario y el entorno, facilitados por la conjunción de inteligencia humana, material y computacional. Los edificios, objetos y espacios pueden reconfigurarse a sí mismos, tanto a nivél atómico como a macro escala, para responder a los cambios ambientales y a las necesidades de los usuarios. Al mismo tiempo, el paradigma Design Behaviors coloca en el centro del diseño y la morfogénesis no solo la materia y el medio ambiente, sino también a los usuarios, que se convierten en participantes de su entorno construido y desempeñan el papel creativo final. El nuevo paradigma define "entornos" y "ecologías" aumentados de manera singular, donde el ser humano, la naturaleza, el artificio y la tecnología coexisten de manera colectiva y evolutiva dentro de un marco de mayor conciencia consciente. El nuevo paradigma de diseño es también un nuevo paradigma cultural, en el que las redes estáticas, repetitivas y cartesianas, tradicionalmente relacionadas con la seguridad, la orientación y el confort, dan paso al movimiento, la imprevisibilidad y la evolución orgánica. Esta tesis sostiene que, si bien no hay duda de que nuestras ciudades futuras consistirán en una capa extensa de sensores distribuidos e interfaces digitales, también contarán con una capa adicional de materiales dinámicos y suaves, en lugar de rígidos y duros, capaces de sentir como sensores, actuar como motores y ser programados como un software. La nueva materialidad de nuestras ciudades puede ser activada por el medio ambiente para cambiar su estado (Re-Active Matter), puede ser controlada por los usuarios para responderles (Co-Active Matter), y eventualmente puede diseñarse y programarse para aprender y evolucionar por sí misma así como lo hacen los organismos vivos (Self-Active Matter). El espacio físico de la ciudad es, por lo tanto, el entrelazado holístico entre contenido digital y material, convirtiéndose en un agente activo en la relación dinámica entre el medio ambiente y los humanos

    Creating an ambient intelligence network using insight and merged reality technologies

    Get PDF
    Humans live and work in environments which are essentially “dumb”, though recently, due to information networks, devices within these areas have increasingly become connected. The system presented here builds on previous work to create an ambient intelligence zone using facets of a merged reality system and a new process based on recognition/insight patterns. When combined, agents within the system communicate and react as one to form a responsive ambient intelligence at a given locatio

    Creating an ambient intelligence network using insight and merged reality technologies

    Get PDF
    Humans live and work in environments which are essentially “dumb”, though recently, due to information networks, devices within these areas have increasingly become connected. The system presented here builds on previous work to create an ambient intelligence zone using facets of a merged reality system and a new process based on recognition/insight patterns. When combined, agents within the system communicate and react as one to form a responsive ambient intelligence at a given locatio

    Designing Sound for Social Robots: Advancing Professional Practice through Design Principles

    Full text link
    Sound is one of the core modalities social robots can use to communicate with the humans around them in rich, engaging, and effective ways. While a robot's auditory communication happens predominantly through speech, a growing body of work demonstrates the various ways non-verbal robot sound can affect humans, and researchers have begun to formulate design recommendations that encourage using the medium to its full potential. However, formal strategies for successful robot sound design have so far not emerged, current frameworks and principles are largely untested and no effort has been made to survey creative robot sound design practice. In this dissertation, I combine creative practice, expert interviews, and human-robot interaction studies to advance our understanding of how designers can best ideate, create, and implement robot sound. In a first step, I map out a design space that combines established sound design frameworks with insights from interviews with robot sound design experts. I then systematically traverse this space across three robot sound design explorations, investigating (i) the effect of artificial movement sound on how robots are perceived, (ii) the benefits of applying compositional theory to robot sound design, and (iii) the role and potential of spatially distributed robot sound. Finally, I implement the designs from prior chapters into humanoid robot Diamandini, and deploy it as a case study. Based on a synthesis of the data collection and design practice conducted across the thesis, I argue that the creation of robot sound is best guided by four design perspectives: fiction (sound as a means to convey a narrative), composition (sound as its own separate listening experience), plasticity (sound as something that can vary and adapt over time), and space (spatial distribution of sound as a separate communication channel). The conclusion of the thesis presents these four perspectives and proposes eleven design principles across them which are supported by detailed examples. This work contributes an extensive body of design principles, process models, and techniques providing researchers and designers with new tools to enrich the way robots communicate with humans
    corecore