24 research outputs found

    Meshfree and Particle Methods in Biomechanics: Prospects and Challenges

    Get PDF
    The use of meshfree and particle methods in the field of bioengineering and biomechanics has significantly increased. This may be attributed to their unique abilities to overcome most of the inherent limitations of mesh-based methods in dealing with problems involving large deformation and complex geometry that are common in bioengineering and computational biomechanics in particular. This review article is intended to identify, highlight and summarize research works on topics that are of substantial interest in the field of computational biomechanics in which meshfree or particle methods have been employed for analysis, simulation or/and modeling of biological systems such as soft matters, cells, biological soft and hard tissues and organs. We also anticipate that this review will serve as a useful resource and guide to researchers who intend to extend their work into these research areas. This review article includes 333 references

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Real-time simulation of soft tissue deformation for surgical simulation

    Get PDF
    Surgical simulation plays an important role in the training, planning and evaluation of many surgical procedures. It requires realistic and real-time simulation of soft tissue deformation under interaction with surgical tools. However, it is challenging to satisfy both of these conflicting requirements. On one hand, biological soft tissues are complex in terms of material compositions, structural formations, and mechanical behaviours, resulting in nonlinear deformation characteristics under an external load. Due to the involvement of both material and geometric nonlinearities, the use of nonlinear elasticity causes a highly expensive computational load, leading to the difficulty to achieve the real-time computational performance required by surgical simulation. On the other hand, in order to satisfy the real-time computational requirement, most of the existing methods are mainly based on linear elasticity under the assumptions of small deformation and homogeneity to describe deformation of soft tissues. Such simplifications allow reduced runtime computation; however, they are inadequate for modelling nonlinear material properties such as anisotropy, heterogeneity and large deformation of soft tissues. In general, the two conflicting requirements of surgical simulation raise immense complexity in modelling of soft tissue deformation. This thesis focuses on establishment of new methodologies for modelling of soft tissue deformation for surgical simulation. Due to geometric and material nonlinearities in soft tissue deformation, the existing methods have only limited capabilities in achieving nonlinear soft tissue deformation in real-time. In this thesis, the main focus is devoted to the real-time and realistic modelling of nonlinear soft tissue deformation for surgical simulation. New methodologies, namely new ChainMail algorithms, energy propagation method, and energy balance method, are proposed to address soft tissue deformation. Results demonstrate that the proposed methods can simulate the typical soft tissue mechanical properties, accommodate isotropic and homogeneous, anisotropic and heterogeneous materials, handle incompressibility and viscoelastic behaviours, conserve system energy, and achieve realistic, real-time and stable deformation. In the future, it is projected to extend the proposed methodologies to handle surgical operations, such as cutting, joining and suturing, for topology changes occurred in surgical simulation

    A new approach for the in-vivo characterization of the biomechanical behavior of the breast and the cornea

    Full text link
    The characterization of the mechanical behavior of soft living tissues is a big challenge in Biomechanics. The difficulty arises from both the access to the tissues and the manipulation in order to know their physical properties. Currently, the biomechanical characterization of the organs is mainly performed by testing ex-vivo samples or by means of indentation tests. In the first case, the obtained behavior does not represent the real behavior of the organ. In the second case, it is only a representation of the mechanical response of the indented areas. The purpose of the research reported in this thesis is the development of a methodology to in-vivo characterize the biomechanical behavior of two different organs: the breast and the cornea. The proposed methodology avoids invasive measurements to obtain the mechanical response of the organs and is able to completely characterize of the biomechanical behavior of them. The research reported in this thesis describes a methodology to in-vivo characterize the biomechanical behavior of the breast and the cornea. The estimation of the elastic constants of the constitutive equations that define the mechanical behavior of these organs is performed using an iterative search algorithm which optimizes these parameters. The search is based on the iterative variation of the elastic constants of the model in order to increase the similarity between a simulated deformation of the organ and the real one. The similarity is measured by means of a volumetric similarity function which combines overlap-based coefficients and distance-based coefficients. Due to the number of parameters to be characterized as well as the non-convergences that the solution may present in some regions, genetic heuristics were chosen to drive the search algorithm. In the case of the breast, the elastic constants of an anisotropic hyperelastic neo-Hookean model proposed to simulate the compression of the breast during an MRI-guided biopsy were estimated. Results from this analysis showed that the proposed algorithm accurately found the elastic constants of the proposed model, providing an average relative error below 10%. The methodology was validated using breast software phantoms. Nevertheless, this methodology can be easily transferred into its use with real breasts. In the case of the cornea, the elastic constants of a hyperelastic second-order Ogden model were estimated for 24 corneas corresponding to 12 patients. The finite element method was applied in order to simulate the deformation of the human corneas due to non-contact tonometry. The iterative search was applied in order to estimate the elastic constants of the model which approximates the most the simulated deformation to the real one. Results showed that these constants can be estimated with an error of about 5%. After the results obtained for both organs, it can be concluded that the iterative search methodology presented in this thesis allows the \textit{in-vivo} estimation the patient-specific elastic constants of the constitutive biomechanical models that govern the biomechanical behavior of these two organs.Lago Ángel, MÁ. (2014). A new approach for the in-vivo characterization of the biomechanical behavior of the breast and the cornea [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/44116TESI

    Technologies for Biomechanically-Informed Image Guidance of Laparoscopic Liver Surgery

    Get PDF
    Laparoscopic surgery for liver resection has a number medical advantages over open surgery, but also comes with inherent technical challenges. The surgeon only has a very limited field of view through the imaging modalities routinely employed intra-operatively, laparoscopic video and ultrasound, and the pneumoperitoneum required to create the operating space and gaining access to the organ can significantly deform and displace the liver from its pre-operative configuration. This can make relating what is visible intra-operatively to the pre-operative plan and inferring the location of sub-surface anatomy a very challenging task. Image guidance systems can help overcome these challenges by updating the pre-operative plan to the situation in theatre and visualising it in relation to the position of surgical instruments. In this thesis, I present a series of contributions to a biomechanically-informed image-guidance system made during my PhD. The most recent one is work on a pipeline for the estimation of the post-insufflation configuration of the liver by means of an algorithm that uses a database of segmented training images of patient abdomens where the post-insufflation configuration of the liver is known. The pipeline comprises an algorithm for inter and intra-subject registration of liver meshes by means of non-rigid spectral point-correspondence finding. My other contributions are more fundamental and less application specific, and are all contained and made available to the public in the NiftySim open-source finite element modelling package. Two of my contributions to NiftySim are of particular interest with regards to image guidance of laparoscopic liver surgery: 1) a novel general purpose contact modelling algorithm that can be used to simulate contact interactions between, e.g., the liver and surrounding anatomy; 2) membrane and shell elements that can be used to, e.g., simulate the Glisson capsule that has been shown to significantly influence the organ’s measured stiffness

    Frictional Contact in Interactive Deformable Environments

    Get PDF
    L\u2019uso di simulazioni garantisce notevoli vantaggi in termini di economia, realismo e di flessibilit\ue0 in molte aree di ricerca e in ambito dello sviluppo tecnologico. Per questo motivo le simulazioni vengono usate spesso in ambiti quali la prototipazione di parti meccaniche, nella pianificazione e nell\u2019addestramento di procedure di assemblaggio e disassemblaggio inoltre, di recente, le simulazioni si sono dimostrate validi strumenti anche nell\u2019assistenza e nell\u2019addestramento ai chirurghi, in particolare nel caso della chirurgia laparoscopica. La chirurgia laparoscopica, infatti, \ue8 considerata lo standard per molte procedure chirurgiche. La principale differenza rispetto alla chirurgia tradizionale risiede nella notevole limitazione che ha il chirurgo nell\u2019interagire e nel percepire l\u2019ambiente in lavora, sia nella vista che nel tatto. Questo rappresenta una forte limitazione per il chirurgo a cui \ue8 richiesta una lunga fase di addestramento prima di poter ottenere la necessaria destrezza per intervenire in laparoscopia con profitto. Queste limitazioni, d\u2019altra parte, rendono la laparoscopia il candidato ideale per l\u2019introduzione della simulazione nell\u2019addestramento. Attualmente sono disponibili in commercio dei software per l\u2019addestramento alla laparoscopia, tuttavia essi sono in genere basati su modelli rigidi, o modelli che comunque mancano del necessario realismo fisico. L\u2019introduzione di modelli deformabili migliorerebbe notevolmente l\u2019accuratezza e il realismo delle simulazioni. Nel caso dell\u2019addestramento il maggior realismo permetterebbe all\u2019utente di acquisire non solo le conoscenze motorie basilari ma anche capacit\ue0 e conoscenze di pi\uf9 alto livello. I corpi rigidi, infatti, rappresentano una buona approssimazione della realt\ue0 solo in situazioni particolari ed entro intervalli di sollecitazioni molto ristretti. Quando si considerano materiali non ingegneristici, come accade nelle simulazioni chirurgiche, le deformazioni non possono essere trascurate senza compromettere irrimediabilmente il realismo dei risultati. L\u2019uso di modelli deformabili tuttavia introduce notevole complessit\ue0 computazionale per il calcolo della fisica che regola le deformazioni e limita fortemente l\u2019uso di dati precalcolati, spesso utilizzati per velocizzare la fase di identificazione delle collisioni tra i corpi. I ritardi dovuti all\u2019uso di modelli deformabili rappresentano un grosso limite soprattutto nelle applicazioni interattive che, per consentire all\u2019utente di interagire con l\u2019ambiente, richiedono il calcolo della simulazione entro intervalli di tempo molto ridotti. In questa tesi viene affrontato il tema della simulazione di ambienti interattivi composti da corpi deformabili che interagiscono con attrito. Vengono analizzati e sviluppati differenti tecniche e metodi per le diverse componenti della simulazione: dalla simulazione di modelli deformabili, agli algoritmi di identificazione e soluzione delle collisioni e alla modellazione e integrazione dell\u2019attrito nella simulazione. In particolare vengono valutati i principali metodi che rappresentano lo stato dell\u2019arte nella modellazione di materiali deformabili. L\u2019analisi considera i fondamenti fisici su cui i modelli si basano e quindi sul grado di realismo che possono garantire in termini di deformazioni modellabili e la semplicit\ue0 d\u2019uso degli stessi (ovvero la facilit\ue0 di comprensione del metodo, la calibrazione del modello e la possibilit\ue0 di adattare il modello a situazioni differenti) ma viene considerata anche la complessit\ue0 computazionale di ciascun metodo in quanto essa rappresenta un fattore estremamente importante nella scelta e nell\u2019uso dei modelli deformabili nelle simulazioni. Il confronto dei differenti modelli e le caratteristiche identificate hanno motivato lo sviluppo di un metodo innovativo per fornire un\u2019interfaccia comune ai vari metodi di simulazione dei tessuti deformabili. Tale interfaccia ha il vantaggio di fornire dei metodi omogenei per la manipolazione dei diversi modelli deformabili. Ci\uf2 garantisce la possibilit\ue0 di scambiare il modello usato per la simulazione delle deformazioni mantenendo inalterati le altre strutture dati e i metodi della simulazione. L\u2019introduzione di tale interfaccia unificata si dimostra particolarmente vantaggiosa in quanto permette l\u2019uso di un solo metodo per l\u2019identificazione delle collisioni per tutti i differenti modelli deformabili. Ci\uf2 semplifica molto l\u2019analisi e la definizione dei requisiti di tale modulo software. L\u2019identificazione delle collisioni tra modelli rigidi generalmente precalcola delle partizioni dello spazio in cui i corpi sono definiti oppure sfrutta la suddivisione del corpo analizzato in parti convesse per velocizzare la simulazione. Nel caso di modelli deformabili non \ue8 possibile applicare tali tecniche a causa dei continui cambiamenti nella configurazione dei corpi. Dopo che le collisioni tra i corpi sono state riconosciute e che i punti di contatto sono stati identificati e necessario risolvere le collisioni tenendo conto della fisica sottostante i contatti. Per garantire il realismo \ue8 necessario assicurare che i corpi non si compenetrino mai e che nella simulazione delle collisioni tutti i fenomeni fisici di interesse coinvolti nel contatto tra i corpi vengano considerati: questi includono le forze elastiche che si esercitano tra i corpi e le forze di attrito che si generano lungo le superfici di contatto. L\u2019innovativo metodo proposto per la soluzione delle collisioni garantisce il realismo della simulazione e l\u2019integrazione con l\u2019interfaccia proposta per la gestione unificata dei modelli. Una caratteristica importante dei tessuti biologici \ue8 il comportamento anisotropico, dovuto, in genere, alla loro struttura fibrosa. In questa tesi viene proposto un nuovo metodo per aggiungere l\u2019anisotropia al comportamento dei modelli massa molla. Il metodo ha il vantaggio di mantenere la velocit\ue0 computazionale e la semplicit\ue0 di implementazione dei modelli massa molla classici e riesce a differenziare efficacemente la risposta del modello alle sollecitazioni lungo le differenti direzioni. Le tecniche descritte sono state integrate in due applicazioni che forniscono la simulazione della fisica di ambienti con corpi deformabili. La prima delle due implementa tutti i metodi descritti per la simulazione dei modelli deformabili, identifica le collisioni con precisione e le risolve fornendo la possibilit\ue0 di scegliere il modello di attrito pi\uf9 adatto, dimostrando cos\uec la fattibilit\ue0 dell\u2019approccio proposto. La limitazione principale di tale simulatore risiede nell\u2019alto tempo di calcolo richiesto per la simulazione dei singoli passi di simulazione. Tale limitazione \ue8 stata superata in una seconda implementazione che sfrutta il parallelismo intrinseco delle simulazioni fisiche per ottimizzare gli algoritmi e che, quindi, riesce a sfruttare al meglio la potenza computazionale delle architetture hardware parallele. Al fine di ottenere le prestazioni richieste per la simulazione di ambienti interattivi con ritorno di forza, la simulazione \ue8 basata su un algoritmo di identificazione delle collisioni semplificato, ma implementa gli altri metodi descritti in questa tesi. L\u2019implementazione parallela sfrutta le capacit\ue0 di calcolo delle moderne schede video munite di processori altamente paralleli e ci\uf2 permette di aggiornare la scena ogni millisecondo. Questo elimina ogni discontinuit\ue0 nel ritorno di forza reso all\u2019utente e nell\u2019aggiornamento della grafica della scena, inoltre garantisce il realismo necessario alla simulazione fisica sottostante. Le applicazioni implementate provano la fattibilit\ue0 della simulazione della fisica di interazioni complesse tra corpi deformabili. Inoltre, l\u2019implementazione parallela della simulazione rappresenta un promettente punto di partenza per la realizzazione di simulazioni interattive che potr\ue0 essere utilizzato in ambiti di ricerca differenti, quali l\u2019addestramento di chirurghi o la prototipazione rapida.The use of simulations provides great advantages in term of economy, realism, and adaptability to user requirements in many research and technological fields. For this reason simulations are currently exploited, for example, in prototyping of machinery parts, in assembly-disassembly test or training and, recently, simulations have also allowed the development of many useful and promising tools for the assistance and learning of surgical procedures. This is particularly true for laparoscopic intervention. Laparoscopy, in fact, represents the gold standard for many surgical procedures. The principal difference from standard surgery is the reduction of the surgeon ability to perceive the surgical scenario, both from visual and tactile point of view. This represents a great limitation for surgeons who undergo long training before being able to perform laparoscopic intervention with proficiency. This, on the other hand, makes laparoscopy an excellent candidate for the use of simulations for training. Some commercial training softwares are already available on the market, but they are usually based on rigid body models that completely lack the physical realism. The introduction of deformable models may leads to a great increment in terms of realism and accuracy. And, in the case of laparoscopy trainer it may allow the user to learn not only basic motor skills, but also higher level capabilities and knowledge. Rigid bodies, in fact, represents a good approximation of reality only in some situations and in very restricted ranges of solicitations. In particular, when non engineering materials are involved, as happens in surgical simulations, deformations cannot be neglected without completely loosing the realism of the environment. The use of deformable models, however, is limited for the high computational costs involved in the computation of the physics undergoing the deformations and because of the reduction in pre computable data in particular for collision detection between bodies. This represents a very limiting factor in interactive environments where, to allow the user to interactively control the virtual bodies, the simulation should be performed in real time. In this thesis we address the simulation of interactive environment populated with deformable models that interact with frictional contacts. This includes the analysis and the development of different techniques which implement the various parts of the simulation: mainly the methods for the simulation of deformable models, the collision detection and collision solution techniques but also the modelling and the integration of suitable friction models in the simulation. In particular we evaluated the principal methods that represent the state of the art in soft tissue modeling. Our analysis is based on the physical background of each method and thus on its realism in terms of deformations that the method can mimic and on the ease of use (i.e. method understanding, calibration and ability to adapt to different scenarios) but we also compared the computational complexity of different models, as it represents an extremely important factor in the choice and in the use of models in simulations. The comparison of different features in analyzed methods motivated us to the development of an innovative method to wrap in a common representation framework different methodologies of soft tissue simulation. This framework has the advantage of providing a unified interface for all the deformable models and thus it provides the ability to switch between deformable model keeping unchanged all other data structures and methods of the simulation. The use of this unique interface allows us to use one single method to perform the collision detection phase for all the analyzed deformable models, this greatly helped during the identification of requirements and features of such software module. Collision detection phase, when applied to rigid bodies, usually takes advantage of pre computation to subdivide body shapes in convex elements or to construct partitions of the space in which the body is defined to speed up the computation. When handling deformable models this is not possible because of the continuous changes in bodies shape. The collision detection method used in this work takes into account this problem and regularly adapt the data structures to the body configuration. After collisions have been detected and contact points have been identified on colliding bodies, it is necessary to solve the collision in a physics based way. To this extent we have to ensure that objects never compenetrate during the simulation and that, when solving collisions, all the physical phenomena involved in the contact of real bodies are taken into account: this include the elastic response of bodies during the contact and the frictional force exerted between each pair of colliding bodies. The innovative method for solving collision that we describe in this thesis ensures the realism of the simulation and the seamless interaction with the common framework used to integrate deformable models. One important feature of biologic tissues is their anisotropic behavior that usually comes from the fibrous structure of these tissues. In this thesis we propose a new method to introduce anisotropy in mass spring model. The method has the advantages of preserving the speed and ease of implementation of the model and it effectively introduces differentiation of the model behavior along the chosen directions. The described techniques have been integrated in two applications that allows the physical simulation of environments populated with deformable models. The first application implements all the described methods to simulate deformable models, it performs precise collision detection and solution with the possibility to chose the most suitable friction model for the simulation. It demonstrates the effectiveness of the proposed framework. The main limitation of this simulator, i.e. its high computation time, is tackled and solved in a second application that exploits the intrinsic parallelism of physical simulations to optimize the implementation and to exploit parallel architecture computational power. To obtain the performances required for an interactive environment the simulation is based on a simplified collision detection algorithm, but it features all the other techniques described in this thesis. The parallel implementation exploits graphic cards processor, a highly parallel architecture that update the scene every milliseconds. This allows the rendering of smooth haptic feedback to the user and ensures the realism of the physics simulation. The implemented applications prove the feasibility of the simulation of complex interactions between deformable models with physics realism. In addition, the parallel implementation of the simulator represents a promising starting point for the development of interactive simulations that can be used in different fields of research, such as surgeon training or fast prototyping

    Efficient Motion Planning for Deformable Objects with High Degrees of Freedom

    Get PDF
    Many robotics and graphics applications need to be able to plan motions by interacting with complex environmental objects, including solids, sands, plants, and fluids. A key aspect of these deformable objects is that they have high-DOF, which implies that they can move or change shapes in many independent ways subject to physics-based constraints. In these applications, users also impose high-level goals on the movements of high-DOF objects, and planning algorithms need to model their motions and determine the optimal control actions to satisfy the high-level goals. In this thesis, we propose several planning algorithms for high-DOF objects. Our algorithms can improve the scalability considerably and can plan motions for different types of objects, including elastically deformable objects, free-surface flows, and Eulerian fluids. We show that the salient deformations of elastically deformable objects lie in a low-dimensional nonlinear space, i.e., the RS space. By embedding the configuration space in the RS subspace, our optimization-based motion planning algorithm can achieve over two orders of magnitude speedup over prior optimization-based formulations. For free surface flows such as liquids, we utilize features of the planning problems and machine learning techniques to identify low-dimensional latent spaces to accelerate the motion planning computation. For Eulerian fluids without free surfaces, we present a scalable planning algorithm based on novel numerical techniques. We show that the numerical discretization scheme exhibits strong regularity, which allows us to accelerate optimization-based motion planning algorithms using a hierarchical data structure and we can achieve 3-10 times speedup over gradient-based optimization techniques. Finally, for high-DOF objects with many frictional contacts with the environment, we present a contact dynamic model that can handle contacts without expensive combinatorial optimization. We illustrate the benefits of our high-DOF planning algorithms for three applications. First, we can plan contact-rich motion trajectories for general elastically deformable robots. Second, we can achieve real-time performance in terms of planning the motion of a robot arm to transfer the liquids between containers. Finally, our method enables a more intuitive user interface. We allow animation editors to modify animations using an offline motion planner to generate controlled fluid animations.Doctor of Philosoph

    Constrained deformation for evolutionary optimization

    Get PDF
    Sieger D. Constrained deformation for evolutionary optimization. Bielefeld: Universität Bielefeld; 2017.This thesis investigates shape deformation techniques for their use in design optimization tasks. In the first part, we introduce state-of-the-art deformation methods and evaluate them in a set of representative benchmarks. Based on these benchmarking results, we derive essential criteria and features a deformation technique should satisfy in order to be successfully applicable within design optimization. In the second part, we concentrate on the application and improvement of deformation techniques based on radial basis functions. We present and evaluate a unified framework for surface and volume mesh deformation and investigate questions of performance and scalability. In the final third part, we concentrate on the integration of additional constraints into the deformation, thereby improving the overall effectiveness of the design optimization process and fostering the creation of more feasible and producible design variations. We present a novel shape deformation technique that effectively maintains different types of geometric constraints such as planarity, circularity, or characteristic feature lines during deformation. At the same time, our method provides a unique level of modeling flexibility, quality, robustness, and scalability. Finally, we integrate techniques for automatic constraint detection directly into our deformation framework, thereby making our method more easily applicable within complex design optimization scenarios

    Modeling and simulation of cabin air filtration with focus on electrostatic effects

    Get PDF
    Cabin air filters serve to remove harmful pollutants from the air flow supplied to the car passenger compartment. Electrostatic charges on cabin air filter media significantly improve the degree of particle separation without compromising the air permeability, thus achieving superior filtration performance. In order to optimize the performance metrics, a basic understanding of electrostatic filtration effects is required. However, these effects are largely unexplored due to limited experimental measurement options. Numerical simulations allow a deeper insight into fundamental physical processes than the measurement of macroscopic quantities. However, the uni-directionally coupled status quo simulation approach leads to results deviating from experimental observations for electrostatically charged systems. Numerous unknown parameters such as the charge distribution on filter fibers and dust particles and the lacking implementation of all simultaneously effective electrostatic separation mechanisms cause these differences. This dissertation provides an enhanced fully-coupled modeling approach to simulate specific electrostatic filtration effects. The new simulation model includes the interaction of highly bipolar charged dust particles with each other, with filter fibers, and with the background air flow. Extensive studies demonstrate the necessity of this high level of detail in order to dissolve electrostatic agglomeration effects in the inflow area. In addition, combined numerical and experimental test scenarios provide qualitative results allowing to observe the effect of induced dipoles and mirror charges. A combination of the fully-coupled modeling approach with the status quo simulation method in a two-step procedure is highly recommended for further research studies.Innenraumfilter dienen dazu, Schadstoffe aus dem Luftstrom zu entfernen, der in den Fahrgastraum eintritt. Elektrostatische Ladungen auf den Filtermedien verbessern den Partikel-Abscheidegrad von Innenraumfiltern erheblich, ohne dabei die Luftdurchlässigkeit zu beeinflussen, und bewirken so eine deutliche Effizienzsteigerung. Um die Leistungskennzahlen zu optimieren, ist ein grundlegendes Verständnis der elektrostatischen Filtrationseffekte erforderlich. Diese Effekte sind jedoch aufgrund der begrenzten experimentellen Möglichkeiten weitgehend unerforscht. Numerische Simulationen ermöglichen tiefere Einblicke in grundlegende physikalische Vorgänge als die Messung makroskopischer Größen. Der bisher standardmäßig verwendete, unidirektional gekoppelte Simulationsansatz führt jedoch für elektrostatisch geladene Systeme zu Abweichungen von experimentellen Ergebnissen. Zahlreiche unbekannte Parameter, wie die Ladungsverteilung auf Filterfasern und Staubpartikeln, und die fehlende Implementierung aller gleichzeitig wirkenden elektrostatischen Abscheidemechanismen sind die Ursache für diese Unterschiede. Diese Dissertation liefert einen erweiterten, vollständig gekoppelten Modellierungsansatz zur Simulation spezifischer elektrostatischer Filtrationseffekte. Im neuen Simulationsmodell wird die Wechselwirkung stark bipolar geladener Staubpartikeln untereinander, mit Filterfasern und mit der Hintergrundströmung berücksichtigt. Umfangreiche Studien belegen die Notwendigkeit dieses hohen Detailgrades, um elektrostatische Agglomerationseffekte im Einströmbereich aufzulösen. Darüber hinaus liefert die Kombination aus numerischen und experimentellen Testszenarien qualitative Ergebnisse zur Auswirkung induzierter Dipole und Spiegelladungen. Die Verknüpfung des neuen, voll gekoppelten Modellierungsansatzes mit der bisherigen Standard-Simulationsmethode in einem zweistufigen Verfahren wird für weitere Forschungsarbeiten sehr empfohlen
    corecore