1,350 research outputs found

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m

    Multi-Phase Sub-Sampling Fractional-N PLL with soft loop switching for fast robust locking

    Get PDF
    This paper presents a low phase noise sub-sampling PLL (SSPLL) with multi-phase outputs. Automatic soft switching between the sub-sampling phase loop and frequency loop is proposed to improve robustness against perturbations and interferences that may cause a traditional SSPLL to lose lock. A quadrature LC oscillator with capacitive phase interpolation network is employed to generate multi-phase outputs, which are further utilized to achieve fractional-N frequency synthesis. Implemented in a 130nm CMOS technology, the SSPLL chip is able to achieve a measured in-band phase noise of -120 dBc/Hz and a measured integrated jitter of 209 fs at 2.4 GHz, while consuming 27.2 mW with 16 output phases. The measured reference spur and fractional spur level is -72 dBc and -49 dBc, respectively

    Integrated radio frequency synthetizers for wireless applications

    Get PDF
    This thesis consists of six publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis concentrates on the design of phase-locked loop radio frequency synthesizers for wireless applications. In particular, the focus is on the implementation of the prescaler, the phase detector, and the chargepump. This work reviews the requirements set for the frequency synthesizer by the wireless standards, and how these requirements are derived from the system specifications. These requirements apply to both integer-N and fractional-N synthesizers. The work also introduces the special considerations related to the design of fractional-N phase-locked loops. Finally, implementation alternatives for the different building blocks of the synthesizer are reviewed. The presented work introduces new topologies for the phase detector and the chargepump, and improved topologies for high speed CMOS prescalers. The experimental results show that the presented topologies can be successfully used in both integer-N and fractional-N synthesizers with state-of-the-art performance. The last part of this work discusses the additional considerations that surface when the synthesizer is integrated into a larger system chip. It is shown experimentally that the synthesizer can be successfully integrated into a complex transceiver IC without sacrificing the performance of the synthesizer or the transceiver.reviewe

    Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

    Get PDF
    Ultra¬wide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixer¬based frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phase¬locked loop (PLL)¬based synthesizers. Harmonic cancela¬tion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5¬GHz CSD¬QVCO in 0.18 µm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ¬120 dBc at 3 MHz offset. Compared with existing phase shift LC QVCOs, the proposed CSD¬QVCO presents better phase noise and power efficiency. Finally, a novel injection locking frequency divider (ILFD) is presented. Im¬plemented with three stages in 0.18 µm CMOS technology, the ILFD draws 3¬mA current from a 1.8¬V power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range

    One way Doppler extractor. Volume 1: Vernier technique

    Get PDF
    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second
    corecore