284 research outputs found

    From Nonlinear Identification to Linear Parameter Varying Models: Benchmark Examples

    Full text link
    Linear parameter-varying (LPV) models form a powerful model class to analyze and control a (nonlinear) system of interest. Identifying a LPV model of a nonlinear system can be challenging due to the difficulty of selecting the scheduling variable(s) a priori, which is quite challenging in case a first principles based understanding of the system is unavailable. This paper presents a systematic LPV embedding approach starting from nonlinear fractional representation models. A nonlinear system is identified first using a nonlinear block-oriented linear fractional representation (LFR) model. This nonlinear LFR model class is embedded into the LPV model class by factorization of the static nonlinear block present in the model. As a result of the factorization a LPV-LFR or a LPV state-space model with an affine dependency results. This approach facilitates the selection of the scheduling variable from a data-driven perspective. Furthermore the estimation is not affected by measurement noise on the scheduling variables, which is often left untreated by LPV model identification methods. The proposed approach is illustrated on two well-established nonlinear modeling benchmark examples

    WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification

    Full text link
    [EN] Current methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA) involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a re tting procedure of all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems in a single step is proposed. is approach is based on a customized evolutionary algorithm (WH-EA) able to look for the best BLA split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA estimation, the locations of poles and zeros are subtly modi ed within an adequate search space to allow a ne-tuning of the model. e performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identi cation benchmark.This work was partially supported by the Spanish Ministry of Economy and Competitiveness (Project DPI2015-71443-R) and Salesian Polytechnic University of Ecuador through a Ph.D. scholarship granted to the first author.Zambrano-Abad, JC.; Sanchís Saez, J.; Herrero Durá, JM.; Martínez Iranzo, MA. (2018). WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification. Complexity. 2018:1-17. https://doi.org/10.1155/2018/1753262S1172018Mora, L. A., & Amaya, J. E. (2017). Un Nuevo Método de Identificación Basado en la Respuesta Escalón en Lazo Abierto de Sistemas Sobre-amortiguados. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14(1), 31-43. doi:10.1016/j.riai.2016.09.006Liu, T., Wang, Q.-G., & Huang, H.-P. (2013). A tutorial review on process identification from step or relay feedback test. Journal of Process Control, 23(10), 1597-1623. doi:10.1016/j.jprocont.2013.08.003Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2012). System Dynamics. doi:10.1002/9781118152812Bonilla, J., Roca, L., de la Calle, A., & Dormido, S. (2017). Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14(1), 70-81. doi:10.1016/j.riai.2016.11.003Billings, S. A., & Fakhouri, S. Y. (1982). Identification of systems containing linear dynamic and static nonlinear elements. Automatica, 18(1), 15-26. doi:10.1016/0005-1098(82)90022-xLopes dos Santos, P., A. Ramos, J., & Martins de Carvalho, J. L. (2012). Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach. Control Engineering Practice, 20(11), 1156-1164. doi:10.1016/j.conengprac.2012.04.002Kalafatis, A., Arifin, N., Wang, L., & Cluett, W. R. (1995). A new approach to the identification of pH processes based on the Wiener model. Chemical Engineering Science, 50(23), 3693-3701. doi:10.1016/0009-2509(95)00214-pJurado, F. (2006). A method for the identification of solid oxide fuel cells using a Hammerstein model. Journal of Power Sources, 154(1), 145-152. doi:10.1016/j.jpowsour.2005.04.005Boubaker, S. (2017). Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting. Nonlinear Dynamics, 90(2), 797-814. doi:10.1007/s11071-017-3693-9S Gaya, M. (2017). Estimation of Turbidity in Water Treatment Plant using Hammerstein-Wiener and Neural Network Technique. Indonesian Journal of Electrical Engineering and Computer Science, 5(3), 666. doi:10.11591/ijeecs.v5.i3.pp666-672Bai, E.-W., Cai, Z., Dudley-Javorosk, S., & Shields, R. K. (2009). Identification of a modified Wiener–Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling. Automatica, 45(3), 736-743. doi:10.1016/j.automatica.2008.09.023Haryanto, A., & Hong, K.-S. (2013). Maximum likelihood identification of Wiener–Hammerstein models. Mechanical Systems and Signal Processing, 41(1-2), 54-70. doi:10.1016/j.ymssp.2013.07.008Gómez, J. C., Jutan, A., & Baeyens, E. (2004). Wiener model identification and predictive control of a pH neutralisation process. IEE Proceedings - Control Theory and Applications, 151(3), 329-338. doi:10.1049/ip-cta:20040438Li, S., & Li, Y. (2016). Model predictive control of an intensified continuous reactor using a neural network Wiener model. Neurocomputing, 185, 93-104. doi:10.1016/j.neucom.2015.12.048Zhang, Q., Wang, Q., & Li, G. (2016). Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system. Mechanical Systems and Signal Processing, 72-73, 383-394. doi:10.1016/j.ymssp.2015.09.011Ławryńczuk, M. (2016). Nonlinear predictive control of dynamic systems represented by Wiener–Hammerstein models. Nonlinear Dynamics, 86(2), 1193-1214. doi:10.1007/s11071-016-2957-0Schoukens, M., Pintelon, R., & Rolain, Y. (2014). Identification of Wiener–Hammerstein systems by a nonparametric separation of the best linear approximation. Automatica, 50(2), 628-634. doi:10.1016/j.automatica.2013.12.027Vanbeylen, L. (2014). A fractional approach to identify Wiener–Hammerstein systems. Automatica, 50(3), 903-909. doi:10.1016/j.automatica.2013.12.013Sjöberg, J., Lauwers, L., & Schoukens, J. (2012). Identification of Wiener–Hammerstein models: Two algorithms based on the best split of a linear model applied to the SYSID’09 benchmark problem. Control Engineering Practice, 20(11), 1119-1125. doi:10.1016/j.conengprac.2012.07.001Westwick, D. T., & Schoukens, J. (2012). Initial estimates of the linear subsystems of Wiener–Hammerstein models. Automatica, 48(11), 2931-2936. doi:10.1016/j.automatica.2012.06.091Tan, A. H., Wong, H. K., & Godfrey, K. (2012). Identification of a Wiener–Hammerstein system using an incremental nonlinear optimisation technique. Control Engineering Practice, 20(11), 1140-1148. doi:10.1016/j.conengprac.2012.04.007Naitali, A., & Giri, F. (2015). Wiener–Hammerstein system identification – an evolutionary approach. International Journal of Systems Science, 47(1), 45-61. doi:10.1080/00207721.2015.1027758Schoukens, J., Lataire, J., Pintelon, R., Vandersteen, G., & Dobrowiecki, T. (2009). Robustness Issues of the Best Linear Approximation of a Nonlinear System. IEEE Transactions on Instrumentation and Measurement, 58(5), 1737-1745. doi:10.1109/tim.2009.2012948Ljung, L., & Singh, R. (2012). Version 8 of the Matlab System Identification Toolbox. IFAC Proceedings Volumes, 45(16), 1826-1831. doi:10.3182/20120711-3-be-2027.0006

    Identification scheme for fractional Hammerstein Models with the delayed Haar Wavelet

    Get PDF
    The parameter identification of a nonlinear Hammerstein-type process is likely to be complex and challenging due to the existence of significant nonlinearity at the input side. In this paper, a new parameter identification strategy for a block-oriented Hammerstein process is proposed using the Haar wavelet operational matrix (HWOM). To determine all the parameters in the Hammerstein model, a special input excitation is utilized to separate the identification problem of the linear subsystem from the complete nonlinear process. During the first test period, a simple step response data is utilized to estimate the linear subsystem dynamics. Then, the overall system response to sinusoidal input is used to estimate nonlinearity in the process. A single-pole fractional order transfer function with time delay is used to model the linear subsystem. In order to reduce the mathematical complexity resulting from the fractional derivatives of signals, a HWOM based algebraic approach is developed. The proposed method is proven to be simple and robust in the presence of measurement noises. The numerical study illustrates the efficiency of the proposed modeling technique through four different nonlinear processes and results are compared with existing methods

    Fast identification of Wiener-Hammerstein systems using discrete optimisation

    Get PDF
    A fast identification algorithm for Wiener-Hammerstein systems is proposed. The computational cost of separating the front and the back linear time-invariant (LTI) block dynamics is significantly improved by using discrete optimisation. The discrete optimisation is implemented as a genetic algorithm. Numerical results confirm the efficiency and accuracy of the proposed approach

    Consistency aspects of Wiener-Hammerstein model identification in presence of process noise

    Get PDF
    The Wiener-Hammerstein model is a block-oriented model consisting of two linear blocks and a static nonlinearity in the middle. Several identification approaches for this model structure rely on the fact that the best linear approximation of the system is a consistent estimate of the two linear parts, under the hypothesis of Gaussian excitation. But, these approaches do not consider the presence of other disturbance sources than measurement noise. In this paper we consider the presence of a disturbance entering before the nonlinearity (process noise) and we show that, also in this case, the best linear approximation is a consistent estimate of underlying linear dynamics. Furthermore, we analyse the impact of the process noise on the nonlinearity estimation, showing that a standard prediction error method approach can lead to biased results

    Identification of nonlinear processes based on Wiener-Hammerstein models and heuristic optimization.

    Full text link
    [ES] En muchos campos de la ingeniería los modelos matemáticos son utilizados para describir el comportamiento de los sistemas, procesos o fenómenos. Hoy en día, existen varias técnicas o métodos que pueden ser usadas para obtener estos modelos. Debido a su versatilidad y simplicidad, a menudo se prefieren los métodos de identificación de sistemas. Por lo general, estos métodos requieren la definición de una estructura y la estimación computacional de los parámetros que la componen utilizando un conjunto de procedimientos y mediciones de las señales de entrada y salida del sistema. En el contexto de la identificación de sistemas no lineales, un desafío importante es la selección de la estructura. En el caso de que el sistema a identificar presente una no linealidad de tipo estático, los modelos orientados a bloques, pueden ser útiles para definir adecuadamente una estructura. Sin embargo, el diseñador puede enfrentarse a cierto grado de incertidumbre al seleccionar el modelo orientado a bloques adecuado en concordancia con el sistema real. Además de este inconveniente, se debe tener en cuenta que la estimación de algunos modelos orientados a bloques no es sencilla, como es el caso de los modelos de Wiener-Hammerstein que consisten en un bloque NL en medio de dos subsistemas LTI. La presencia de dos subsistemas LTI en los modelos de Wiener-Hammerstein es lo que principalmente dificulta su estimación. Generalmente, el procedimiento de identificación comienza con la estimación de la dinámica lineal, y el principal desafío es dividir esta dinámica entre los dos bloques LTI. Por lo general, esto implica una alta interacción del usuario para desarrollar varios procedimientos, y el modelo final estimado depende principalmente de estas etapas previas. El objetivo de esta tesis es contribuir a la identificación de los modelos de Wiener-Hammerstein. Esta contribución se basa en la presentación de dos nuevos algoritmos para atender aspectos específicos que no han sido abordados en la identificación de este tipo de modelos. El primer algoritmo, denominado WH-EA, permite estimar todos los parámetros de un modelo de Wiener-Hammerstein con un solo procedimiento a partir de un modelo dinámico lineal. Con WH-EA, una buena estimación no depende de procedimientos intermedios ya que el algoritmo evolutivo simultáneamente busca la mejor distribución de la dinámica, ajusta con precisión la ubicación de los polos y los ceros y captura la no linealidad estática. Otra ventaja importante de este algoritmo es que bajo consideraciones específicas y utilizando una señal de excitación adecuada, es posible crear un enfoque unificado que permite también la identificación de los modelos de Wiener y Hammerstein, que son casos particulares del modelo de Wiener-Hammerstein cuando uno de sus bloques LTI carece de dinámica. Lo interesante de este enfoque unificado es que con un mismo algoritmo es posible identificar los modelos de Wiener, Hammerstein y Wiener-Hammerstein sin que el usuario especifique de antemano el tipo de estructura a identificar. El segundo algoritmo llamado WH-MOEA, permite abordar el problema de identificación como un Problema de Optimización Multiobjetivo (MOOP). Sobre la base de este algoritmo se presenta un nuevo enfoque para la identificación de los modelos de Wiener-Hammerstein considerando un compromiso entre la precisión alcanzada y la complejidad del modelo. Con este enfoque es posible comparar varios modelos con diferentes prestaciones incluyendo como un objetivo de identificación el número de parámetros que puede tener el modelo estimado. El aporte de este enfoque se sustenta en el hecho de que en muchos problemas de ingeniería los requisitos de diseño y las preferencias del usuario no siempre apuntan a la precisión del modelo como un único objetivo, sino que muchas veces la complejidad es también un factor predominante en la toma de decisiones.[CA] En molts camps de l'enginyeria els models matemàtics són utilitzats per a descriure el comportament dels sistemes, processos o fenòmens. Hui dia, existeixen diverses tècniques o mètodes que poden ser usades per a obtindre aquests models. A causa de la seua versatilitat i simplicitat, sovint es prefereixen els mètodes d'identificació de sistemes. En general, aquests mètodes requereixen la definició d'una estructura i l'estimació computacional dels paràmetres que la componen utilitzant un conjunt de procediments i mesuraments dels senyals d'entrada i eixida del sistema. En el context de la identificació de sistemes no lineals, un desafiament important és la selecció de l'estructura. En el cas que el sistema a identificar presente una no linealitat de tipus estàtic, els models orientats a blocs, poden ser útils per a definir adequadament una estructura. No obstant això, el dissenyador pot enfrontar-se a cert grau d'incertesa en seleccionar el model orientat a blocs adequat en concordança amb el sistema real. A més d'aquest inconvenient, s'ha de tindre en compte que l'estimació d'alguns models orientats a blocs no és senzilla, com és el cas dels models de Wiener-Hammerstein que consisteixen en un bloc NL enmig de dos subsistemes LTI. La presència de dos subsistemes LTI en els models de Wiener-Hammerstein és el que principalment dificulta la seua estimació. Generalment, el procediment d'identificació comença amb l'estimació de la dinàmica lineal, i el principal desafiament és dividir aquesta dinàmica entre els dos blocs LTI. En general, això implica una alta interacció de l'usuari per a desenvolupar diversos procediments, i el model final estimat depén principalment d'aquestes etapes prèvies. L'objectiu d'aquesta tesi és contribuir a la identificació dels models de Wiener-Hammerstein. Aquesta contribució es basa en la presentació de dos nous algorismes per a atendre aspectes específics que no han sigut adreçats en la identificació d'aquesta mena de models. El primer algorisme, denominat WH-EA (Algorisme Evolutiu per a la identificació de sistemes de Wiener-Hammerstein), permet estimar tots els paràmetres d'un model de Wiener-Hammerstein amb un sol procediment a partir d'un model dinàmic lineal. Amb WH-EA, una bona estimació no depén de procediments intermedis ja que l'algorisme evolutiu simultàniament busca la millor distribució de la dinàmica, afina la ubicació dels pols i els zeros i captura la no linealitat estàtica. Un altre avantatge important d'aquest algorisme és que sota consideracions específiques i utilitzant un senyal d'excitació adequada, és possible crear un enfocament unificat que permet també la identificació dels models de Wiener i Hammerstein, que són casos particulars del model de Wiener-Hammerstein quan un dels seus blocs LTI manca de dinàmica. L'interessant d'aquest enfocament unificat és que amb un mateix algorisme és possible identificar els models de Wiener, Hammerstein i Wiener-Hammerstein sense que l'usuari especifique per endavant el tipus d'estructura a identificar. El segon algorisme anomenat WH-MOEA (Algorisme evolutiu multi-objectiu per a la identificació de models de Wiener-Hammerstein), permet abordar el problema d'identificació com un Problema d'Optimització Multiobjectiu (MOOP). Sobre la base d'aquest algorisme es presenta un nou enfocament per a la identificació dels models de Wiener-Hammerstein considerant un compromís entre la precisió aconseguida i la complexitat del model. Amb aquest enfocament és possible comparar diversos models amb diferents prestacions incloent com un objectiu d'identificació el nombre de paràmetres que pot tindre el model estimat. L'aportació d'aquest enfocament se sustenta en el fet que en molts problemes d'enginyeria els requisits de disseny i les preferències de l'usuari no sempre apunten a la precisió del model com un únic objectiu, sinó que moltes vegades la complexitat és també un factor predominant en la presa de decisions.[EN] In several engineering fields, mathematical models are used to describe the behaviour of systems, processes or phenomena. Nowadays, there are several techniques or methods for obtaining mathematical models. Because of their versatility and simplicity, system identification methods are often preferred. Generally, systems identification methods require defining a structure and estimating computationally the parameters that make it up, using a set of procedures y measurements of the system's input and output signals. In the context of nonlinear system identification, a significant challenge is the structure selection. In the case that the system to be identified presents a static type of nonlinearity, block-oriented models can be useful to define a suitable structure. However, the designer may face a certain degree of uncertainty when selecting the block-oriented model in accordance with the real system. In addition to this inconvenience, the estimation of some block-oriented models is not an easy task, as is the case with the Wiener-Hammerstein models consisting of a NL block in the middle of two LTI subsystems. The presence of two LTI subsystems in the Wiener-Hammerstein models is what mainly makes their estimation difficult. Generally, the identification procedure begins with the estimation of the linear dynamics, and the main challenge is to split this dynamic between the two LTI block. Usually, this implies a high user interaction to develop several procedures, and the final model estimated mostly depends on these previous stages. The aim of this thesis is to contribute to the identification of the Wiener-Hammerstein models. This contribution is based on the presentation of two new algorithms to address specific aspects that have not been addressed in the identification of this type of model. The first algorithm, called WH-EA (An Evolutionary Algorithm for Wiener-Hammerstein System Identification), allows estimating all the parameters of a Wiener-Hammerstein model with a single procedure from a linear dynamic model. With WH-EA, a good estimate does not depend on intermediate procedures since the evolutionary algorithm looks for the best dynamic division, while the locations of the poles and zeros are fine-tuned, and nonlinearity is captured simultaneously. Another significant advantage of this algorithm is that under specific considerations and using a suitable excitation signal; it is possible to create a unified approach that also allows the identification of Wiener and Hammerstein models which are particular cases of the Wiener-Hammerstein model when one of its LTI blocks lacks dynamics. What is interesting about this unified approach is that with the same algorithm, it is possible to identify Wiener, Hammerstein, and Wiener-Hammerstein models without the user specifying in advance the type of structure to be identified. The second algorithm called WH-MOEA (Multi-objective Evolutionary Algorithm for Wiener-Hammerstein identification), allows to address the identification problem as a Multi-Objective Optimisation Problem (MOOP). Based on this algorithm, a new approach for the identification of Wiener-Hammerstein models is presented considering a compromise between the accuracy achieved and the model complexity. With this approach, it is possible to compare several models with different performances, including as an identification target the number of parameters that the estimated model may have. The contribution of this approach is based on the fact that in many engineering problems the design requirements and user's preferences do not always point to the accuracy of the model as a single objective, but many times the complexity is also a predominant factor in decision-making.Zambrano Abad, JC. (2021). Identification of nonlinear processes based on Wiener-Hammerstein models and heuristic optimization [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171739TESI

    Parametric identification of nonlinear fractional Hammerstein models

    Get PDF
    In this paper, a system identification method for continuous fractional-order Hammerstein models is proposed. A block structured nonlinear system constituting a static nonlinear block followed by a fractional-order linear dynamic system is considered. The fractional differential operator is represented through the generalized operational matrix of block pulse functions to reduce computational complexity. A special test signal is developed to isolate the identification of the nonlinear static function from that of the fractional-order linear dynamic system. The merit of the proposed technique is indicated by concurrent identification of the fractional order with linear system coefficients, algebraic representation of the immeasurable nonlinear static function output, and permitting use of non-iterative procedures for identification of the nonlinearity. The efficacy of the proposed method is exhibited through simulation at various signal-to-noise ratios
    corecore