2,985 research outputs found

    On a novel fourth-order algorithm for solving systems of nonlinear equations

    Full text link
    This paper focuses on solving systems of nonlinear equations numerically. We propose an efficient iterative scheme including two steps and fourth order of convergence. The proposed method does not require the evaluation of second or higher order Frechet derivatives per iteration to proceed and reach fourth order of convergence. Finally, numerical results illustrate the efficiency of the method.The authors would like to thank the referees for the valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Babajee, DKR.; Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR. (2012). On a novel fourth-order algorithm for solving systems of nonlinear equations. Journal of Applied Mathematics. 2012. https://doi.org/10.1155/2012/1654522012Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., Karami, A., & Barati, A. (2010). Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(8), 2002-2012. doi:10.1016/j.cam.2009.09.035Darvishi, M. T., & Barati, A. (2007). A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(1), 257-261. doi:10.1016/j.amc.2006.09.115Soleymani, F., Khattri, S. K., & Karimi Vanani, S. (2012). Two new classes of optimal Jarratt-type fourth-order methods. Applied Mathematics Letters, 25(5), 847-853. doi:10.1016/j.aml.2011.10.030Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). Accelerated methods of order 2p for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(10), 2696-2702. doi:10.1016/j.cam.2009.11.018Dayton, B. H., Li, T.-Y., & Zeng, Z. (2011). Multiple zeros of nonlinear systems. Mathematics of Computation, 80(276), 2143-2143. doi:10.1090/s0025-5718-2011-02462-2Haijun, W. (2008). New third-order method for solving systems of nonlinear equations. Numerical Algorithms, 50(3), 271-282. doi:10.1007/s11075-008-9227-2Noor, M. A., Waseem, M., Noor, K. I., & Al-Said, E. (2012). Variational iteration technique for solving a system of nonlinear equations. Optimization Letters, 7(5), 991-1007. doi:10.1007/s11590-012-0479-3Frontini, M., & Sormani, E. (2004). Third-order methods from quadrature formulae for solving systems of nonlinear equations. Applied Mathematics and Computation, 149(3), 771-782. doi:10.1016/s0096-3003(03)00178-4Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zCordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Stability anomalies of some jacobian-free iterative methods of high order of convergence

    Full text link
    [EN] In this manuscript, we design two classes of parametric iterative schemes to solve nonlinear problems that do not need to evaluate Jacobian matrices and need to solve three linear systems per iteration with the same divided difference operator as the coefficient matrix. The stability performance of the classes is analyzed on a quadratic polynomial system, and it is shown that for many values of the parameter, only convergence to the roots of the problem exists. Finally, we check the performance of these methods on some test problems to confirm the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under grants PGC2018-095896-B-C22, Generalitat Valenciana PROMETEO/2016/089 and FONDOCYT 027-2018 and 029-2018, Dominican Republic.Cordero Barbero, A.; García-Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, MP. (2019). Stability anomalies of some jacobian-free iterative methods of high order of convergence. Axioms. 8(2):1-15. https://doi.org/10.3390/axioms8020051S11582Frontini, M., & Sormani, E. (2004). Third-order methods from quadrature formulae for solving systems of nonlinear equations. Applied Mathematics and Computation, 149(3), 771-782. doi:10.1016/s0096-3003(03)00178-4Homeier, H. H. . (2004). A modified Newton method with cubic convergence: the multivariate case. Journal of Computational and Applied Mathematics, 169(1), 161-169. doi:10.1016/j.cam.2003.12.041Aslam Noor, M., & Waseem, M. (2009). Some iterative methods for solving a system of nonlinear equations. Computers & Mathematics with Applications, 57(1), 101-106. doi:10.1016/j.camwa.2008.10.067Xiao, X., & Yin, H. (2015). A new class of methods with higher order of convergence for solving systems of nonlinear equations. Applied Mathematics and Computation, 264, 300-309. doi:10.1016/j.amc.2015.04.094Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Darvishi, M. T., & Barati, A. (2007). A third-order Newton-type method to solve systems of nonlinear equations. Applied Mathematics and Computation, 187(2), 630-635. doi:10.1016/j.amc.2006.08.080Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7Narang, M., Bhatia, S., & Kanwar, V. (2016). New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations. Applied Mathematics and Computation, 275, 394-403. doi:10.1016/j.amc.2015.11.063Behl, R., Sarría, Í., González, R., & Magreñán, Á. A. (2019). Highly efficient family of iterative methods for solving nonlinear models. Journal of Computational and Applied Mathematics, 346, 110-132. doi:10.1016/j.cam.2018.06.042Amorós, C., Argyros, I., González, R., Magreñán, Á., Orcos, L., & Sarría, Í. (2019). Study of a High Order Family: Local Convergence and Dynamics. Mathematics, 7(3), 225. doi:10.3390/math7030225Argyros, I., & González, D. (2015). Local Convergence for an Improved Jarratt-type Method in Banach Space. International Journal of Interactive Multimedia and Artificial Intelligence, 3(4), 20. doi:10.9781/ijimai.2015.344Sharma, J. R., & Gupta, P. (2014). An efficient fifth order method for solving systems of nonlinear equations. Computers & Mathematics with Applications, 67(3), 591-601. doi:10.1016/j.camwa.2013.12.004Cordero, A., Gutiérrez, J. M., Magreñán, Á. A., & Torregrosa, J. R. (2016). Stability analysis of a parametric family of iterative methods for solving nonlinear models. Applied Mathematics and Computation, 285, 26-40. doi:10.1016/j.amc.2016.03.021Cordero, A., Soleymani, F., & Torregrosa, J. R. (2014). Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Applied Mathematics and Computation, 244, 398-412. doi:10.1016/j.amc.2014.07.010Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zArgyros, I., & George, S. (2015). Ball Convergence for Steffensen-type Fourth-order Methods. International Journal of Interactive Multimedia and Artificial Intelligence, 3(4), 37. doi:10.9781/ijimai.2015.347Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    Modified Potra-Pták multi-step schemes with accelerated order of convergence for solving sistems of nonlinear equations

    Full text link
    [EN] In this study, an iterative scheme of sixth order of convergence for solving systems of nonlinear equations is presented. The scheme is composed of three steps, of which the first two steps are that of third order Potra-Ptak method and last is weighted-Newton step. Furthermore, we generalize our work to derive a family of multi-step iterative methods with order of convergence 3r + 6, r = 0, 1, 2, .... The sixth order method is the special case of this multi-step scheme for r = 0. The family gives a four-step ninth order method for r = 1. As much higher order methods are not used in practice, so we study sixth and ninth order methods in detail. Numerical examples are included to confirm theoretical results and to compare the methods with some existing ones. Different numerical tests, containing academical functions and systems resulting from the discretization of boundary problems, are introduced to show the efficiency and reliability of the proposed methods.This research was partially supported by Ministerio de Economia y Competitividad under grants MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.Arora, H.; Torregrosa Sánchez, JR.; Cordero Barbero, A. (2019). Modified Potra-Pták multi-step schemes with accelerated order of convergence for solving sistems of nonlinear equations. Mathematical and Computational Applications (Online). 24(1):1-15. https://doi.org/10.3390/mca24010003S115241Homeier, H. H. . (2004). A modified Newton method with cubic convergence: the multivariate case. Journal of Computational and Applied Mathematics, 169(1), 161-169. doi:10.1016/j.cam.2003.12.041Darvishi, M. T., & Barati, A. (2007). A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(1), 257-261. doi:10.1016/j.amc.2006.09.115Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zCordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2011). Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 217(9), 4548-4556. doi:10.1016/j.amc.2010.11.006Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 236(6), 1259-1266. doi:10.1016/j.cam.2011.08.008Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). Ostrowski type methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 218(6), 2377-2385. doi:10.1016/j.amc.2011.08.011Grau-Sánchez, M., Noguera, M., & Amat, S. (2013). On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. Journal of Computational and Applied Mathematics, 237(1), 363-372. doi:10.1016/j.cam.2012.06.005Sharma, J. R., & Arora, H. (2013). On efficient weighted-Newton methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 222, 497-506. doi:10.1016/j.amc.2013.07.066Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    A Sixth-Order Extension to the MATLAB Package bvp4c of J. Kierzenka and L. Shampine

    Get PDF
    A new two-point boundary value problem algorithm based upon the MATLAB bvp4c package of Kierzenka and Shampine is described. The algorithm, implemented in a new package bvp6c, uses the residual control framework of bvp4c (suitably modified for a more accurate finite difference approximation) to maintain a user specified accuracy. The new package is demonstrated to be as robust as the existing software, but more efficient for most problems, requiring fewer internal mesh points and evaluations to achieve the required accuracy

    On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation

    Get PDF
    The piecewise perturbation methods (PPM) have proven to be very efficient for the numerical solution of the linear time-independent Schrödinger equation. The underlying idea is to replace the potential function piecewisely by simpler approximations and then to solve the approximating problem. The accuracy is improved by adding some perturbation corrections. Two types of approximating potentials were considered in the literature, that is piecewise constant and piecewise linear functions, giving rise to the so-called CP methods (CPM) and LP methods (LPM). Piecewise polynomials of higher degree have not been used since the approximating problem is not easy to integrate analytically. As suggested by Ixaru (Comput Phys Commun 177:897–907, 2007), this problem can be circumvented using another perturbative approach to construct an expression for the solution of the approximating problem. In this paper, we show that there is, however, no need to consider PPM based on higher-order polynomials, since these methods are equivalent to the CPM. Also, LPM is equivalent to CPM, although it was sometimes suggested in the literature that an LP method is more suited for problems with strongly varying potentials. We advocate that CP schemes can (and should) be used in all cases, since it forms the most straightforward way of devising PPM and there is no advantage in considering other piecewise polynomial perturbation methods

    The Magnus expansion and some of its applications

    Get PDF
    Approximate resolution of linear systems of differential equations with varying coefficients is a recurrent problem shared by a number of scientific and engineering areas, ranging from Quantum Mechanics to Control Theory. When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to built up approximate exponential representations of the solution of the system. It provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory. Every Magnus approximant corresponds in Perturbation Theory to a partial re-summation of infinite terms with the important additional property of preserving at any order certain symmetries of the exact solution. The goal of this review is threefold. First, to collect a number of developments scattered through half a century of scientific literature on Magnus expansion. They concern the methods for the generation of terms in the expansion, estimates of the radius of convergence of the series, generalizations and related non-perturbative expansions. Second, to provide a bridge with its implementation as generator of especial purpose numerical integration methods, a field of intense activity during the last decade. Third, to illustrate with examples the kind of results one can expect from Magnus expansion in comparison with those from both perturbative schemes and standard numerical integrators. We buttress this issue with a revision of the wide range of physical applications found by Magnus expansion in the literature.Comment: Report on the Magnus expansion for differential equations and its applications to several physical problem
    corecore