906 research outputs found

    Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators

    Get PDF
    Dozens of exponential integration formulas have been proposed for the high-accuracy solution of stiff PDEs such as the Allen-Cahn, Korteweg-de Vries and Ginzburg-Landau equations. We report the results of extensive comparisons in MATLAB and Chebfun of such formulas in 1D, 2D and 3D, focusing on fourth and higher order methods, and periodic semilinear stiff PDEs with constant coefficients. Our conclusion is that it is hard to do much better than one of the simplest of these formulas, the ETDRK4 scheme of Cox and Matthews

    A time-splitting pseudospectral method for the solution of the Gross-Pitaevskii equations using spherical harmonics with generalised-Laguerre basis functions

    Get PDF
    We present a method for numerically solving a Gross-Pitaevskii system of equations with a harmonic and a toroidal external potential that governs the dynamics of one- and two-component Bose-Einstein condensates. The method we develop maintains spectral accuracy by employing Fourier or spherical harmonics in the angular coordinates combined with generalised-Laguerre basis functions in the radial direction. Using an error analysis, we show that the method presented leads to more accurate results than one based on a sine transform in the radial direction when combined with a time-splitting method for integrating the equations forward in time. In contrast to a number of previous studies, no assumptions of radial or cylindrical symmetry is assumed allowing the method to be applied to 2D and 3D time-dependent simulations. This is accomplished by developing an efficient algorithm that accurately performs the generalised-Laguerre transforms of rotating Bose-Einstein condensates for different orders of the Laguerre polynomials. Using this spatial discretisation together with a second order Strang time-splitting method, we illustrate the scheme on a number of 2D and 3D computations of the ground state of a non-rotating and rotating condensate. Comparisons between previously derived theoretical results for these ground state solutions and our numerical computations show excellent agreement for these benchmark problems. The method is further applied to simulate a number of time-dependent problems including the Kelvin-Helmholtz instability in a two-component rotating condensate and the motion of quantised vortices in a 3D condensate

    Numerical schemes for general Klein–Gordon equations with Dirichlet and nonlocal boundary conditions

    Get PDF
    In this work, we address the problem of solving nonlinear general Klein–Gordon equations (nlKGEs). Different fourth- and sixth-order, stable explicit and implicit, finite difference schemes are derived. These new methods can be considered to approximate all type of Klein–Gordon equations (KGEs) including phi-four, forms I, II, and III, sine-Gordon, Liouville, damped Klein–Gordon equations, and many others. These KGEs have a great importance in engineering and theoretical physics.The higher-order methods proposed in this study allow a reduction in the number of nodes, which might also be very interesting when solving multi-dimensional KGEs. We have studied the stability and consistency of the proposed schemes when considering certain smoothness conditions of the solutions. Additionally, both the typical Dirichlet and some nonlocal integral boundary conditions have been studied. Finally, some numerical results are provided to support the theoretical aspects previously considered
    • 

    corecore