7,691 research outputs found

    Crowdsourcing Swarm Manipulation Experiments: A Massive Online User Study with Large Swarms of Simple Robots

    Full text link
    Micro- and nanorobotics have the potential to revolutionize many applications including targeted material delivery, assembly, and surgery. The same properties that promise breakthrough solutions---small size and large populations---present unique challenges to generating controlled motion. We want to use large swarms of robots to perform manipulation tasks; unfortunately, human-swarm interaction studies as conducted today are limited in sample size, are difficult to reproduce, and are prone to hardware failures. We present an alternative. This paper examines the perils, pitfalls, and possibilities we discovered by launching SwarmControl.net, an online game where players steer swarms of up to 500 robots to complete manipulation challenges. We record statistics from thousands of players, and use the game to explore aspects of large-population robot control. We present the game framework as a new, open-source tool for large-scale user experiments. Our results have potential applications in human control of micro- and nanorobots, supply insight for automatic controllers, and provide a template for large online robotic research experiments.Comment: 8 pages, 13 figures, to appear at 2014 IEEE International Conference on Robotics and Automation (ICRA 2014

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms

    Get PDF
    open access articleOur goal is to control a robotic swarm without removing its swarm-like nature. In other words, we aim to intrinsically control a robotic swarm emergent behavior. Past attempts at governing robotic swarms or their selfcoordinating emergent behavior, has proven ineffective, largely due to the swarm’s inherent randomness (making it difficult to predict) and utter simplicity (they lack a leader, any kind of centralized control, long-range communication, global knowledge, complex internal models and only operate on a couple of basic, reactive rules). The main problem is that emergent phenomena itself is not fully understood, despite being at the forefront of current research. Research into 1D and 2D Cellular Automata has uncovered a hidden computational layer which bridges the micromacro gap (i.e., how individual behaviors at the micro-level influence the global behaviors on the macro-level). We hypothesize that there also lie embedded computational mechanisms at the heart of a robotic swarm’s emergent behavior. To test this theory, we proceeded to simulate robotic swarms (represented as both particles and dynamic networks) and then designed local rules to induce various types of intelligent, emergent behaviors (as well as designing genetic algorithms to evolve robotic swarms with emergent behaviors). Finally, we analysed these robotic swarms and successfully confirmed our hypothesis; analyzing their developments and interactions over time revealed various forms of embedded spatiotemporal patterns which store, propagate and parallel process information across the swarm according to some internal, collision-based logic (solving the mystery of how simple robots are able to self-coordinate and allow global behaviors to emerge across the swarm)

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    UNMANNED GROUND VEHICLE (UGV) DOCKING, CONNECTION, AND CABLING FOR ELECTRICAL POWER TRANSMISSION IN AUTONOMOUS MOBILE MICROGRIDS

    Get PDF
    Autonomous Mobile Microgrids provide electrical power to loads in environments where humans either can not, or would prefer not to, perform the task of positioning and connecting the power grid equipment. The contributions of this work compose an architecture for electrical power transmission by Unmanned Ground Vehicles (UGV). Purpose-specific UGV docking and cable deployment software algorithms, and hardware for electrical connection and cable management, has been deployed on Clearpath Husky robots. Software development leverages Robot Operating System (ROS) tools for navigation and rendezvous of the autonomous UGV robots, with task-specific visual feedback controllers for docking validated in Monte-Carlo outdoor trials with a 73% docking rate, and application to wireless power transmission demonstrated in an outdoor environment. An “Adjustable Cable Management Mechanism” (ACMM) was designed to meet low cost, compact-platform constraints for powered deployment and retraction by a UGV of electrical cable subject to disturbance, with feed rates up to 1 m/s. A probe-and-funnel AC/DC electrical connector system was de- veloped for deployment on UGVs, which does not substantially increase the cost or complexity of the UGV, while providing a repeatable and secure method of coupling electrical contacts subject to a docking miss-alignment of up to +/-2 cm laterally and +/-15 degrees axially. Cabled power transmission is accomplished by a feed-forward/feedback control method, which utilizes visual estimation of the cable state to deploy electrical cable without tension, in the obstacle-free track of the UGV as it transverses to connect power grid nodes. Cabling control response to step-input UGV chassis velocities in the forward, reverse, and zero-point-turn maneuvers are presented, as well as outdoor cable deployment. This power transmission capability is relevant to diverse domains including military Forward-Operating-Bases, disaster response, robotic persistent operation, underwater mining, or planetary exploration
    • …
    corecore