4,766 research outputs found

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Word Embeddings for Wine Recommender Systems Using Vocabularies of Experts and Consumers

    Get PDF
    This vision paper proposes an approach to use the most advanced word embeddings techniques to bridge the gap between the discourses of experts and non-experts and more specifically the terminologies used by the twocommunities. Word embeddings makes it possible to find equivalent terms between experts and non-experts, byapproach the similarity between words or by revealing hidden semantic relations. Thus, these controlledvocabularies with these new semantic enrichments are exploited in a hybrid recommendation system incorporating content-based ontology and keyword-based ontology to obtain relevant wines recommendations regardless of the level of expertise of the end user. The major aim is to find a non-expert vocabulary from semantic rules to enrich the knowledge of the ontology and improve the indexing of the items (i.e. wine) and the recommendation process

    Graph-based reasoning in collaborative knowledge management for industrial maintenance

    Get PDF
    Capitalization and sharing of lessons learned play an essential role in managing the activities of industrial systems. This is particularly the case for the maintenance management, especially for distributed systems often associated with collaborative decision-making systems. Our contribution focuses on the formalization of the expert knowledge required for maintenance actors that will easily engage support tools to accomplish their missions in collaborative frameworks. To do this, we use the conceptual graphs formalism with their reasoning operations for the comparison and integration of several conceptual graph rules corresponding to different viewpoint of experts. The proposed approach is applied to a case study focusing on the maintenance management of a rotary machinery system

    05371 Abstracts Collection -- Principles and Practices of Semantic Web Reasoning

    Get PDF
    From 11.09.05 to 16.09.05, the Dagstuhl Seminar 05371 ``Principles and Practices of Semantic Web Reasoning\u27\u27 % generate automaticall was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    A Formal Transformation Method for Automated Fault Tree Generation from a UML Activity Model

    Get PDF
    Fault analysis and resolution of faults should be part of any end-to-end system development process. This paper is concerned with developing a formal transformation method that maps control flows modeled in UML Activities to semantically equivalent Fault Trees. The transformation method developed features the use of propositional calculus and probability theory. Fault Propagation Chains are introduced to facilitate the transformation method. An overarching metamodel comprised of transformations between models is developed and is applied to an understood Traffic Management System of Systems problem to demonstrate the approach. In this way, the relational structure of the system behavior model is reflected in the structure of the Fault Tree. The paper concludes with a discussion of limitations of the transformation method and proposes approaches to extend it to object flows, State Machines and functional allocations.Comment: 1st submission made to IEEE Transactions on Reliability on 27-Nov-2017; 2nd submission (revision) made on 27-Apr-2018. This version is the 2nd submission. 20 pages, 11 figure

    A formal transformation method for automated fault tree generation from a UML activity model

    Get PDF
    IEEE Fault analysis and resolution of faults should be part of any end-to-end system development process. This paper is concerned with developing a formal transformation method that maps control flows modeled in unified modeling language activities to semantically equivalent fault trees. The transformation method developed features the use of propositional calculus and probability theory. Fault propagation chains are introduced to facilitate the method. An overarching metamodel comprised of transformations between models is developed and is applied to an understood traffic management system of systems problem to demonstrate the approach. In this way, the relational structure of the system behavior model is reflected in the structure of the fault tree. The paper concludes with a discussion of limitations of the transformation method and proposes approaches to extend it to object flows, state machines, and functional allocations
    corecore