14,755 research outputs found

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    The Joys of Graph Transformation

    Get PDF
    We believe that the technique of graph transformation offers a very natural way to specify semantics for languages that have dynamic allocation and linking structure; for instance, object-oriented programming languages, but also languages for mobility. In this note we expose, on a rather informal level, the reasons for this belief. Our hope in doing this is to raise interest in this technique and so generate more interest in the fascinating possibilities and open questions of this area.\u

    Pattern-based software architecture for service-oriented software systems

    Get PDF
    Service-oriented architecture is a recent conceptual framework for service-oriented software platforms. Architectures are of great importance for the evolution of software systems. We present a modelling and transformation technique for service-centric distributed software systems. Architectural configurations, expressed through hierarchical architectural patterns, form the core of a specification and transformation technique. Patterns on different levels of abstraction form transformation invariants that structure and constrain the transformation process. We explore the role that patterns can play in architecture transformations in terms of functional properties, but also non-functional quality aspects

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    Full Semantics Preservation in Model Transformation – A Comparison of Proof Techniques

    Get PDF
    Model transformation is a prime technique in modern, model-driven software design. One of the most challenging issues is to show that the semantics of the models is not affected by the transformation. So far, there is hardly any research into this issue, in particular in those cases where the source and target languages are different.\ud \ud In this paper, we are using two different state-of-the-art proof techniques (explicit bisimulation construction versus borrowed contexts) to show bisimilarity preservation of a given model transformation between two simple (self-defined) languages, both of which are equipped with a graph transformation-based operational semantics. The contrast between these proof techniques is interesting because they are based on different model transformation strategies: triple graph grammars versus in situ transformation. We proceed to compare the proofs and discuss scalability to a more realistic setting.\u

    Towards the Formal Verification of Model Transformations: An Application to Kermeta

    Get PDF
    Model-Driven Engineering (MDE) is becoming a popular engineering methodology for developing large-scale software applications, using models and transformations as primary principles. MDE is now being successfully applied to domain-specific languages (DSLs), which target a narrow subject domain like process management, telecommunication, product lines, smartphone applications among others, providing experts high-level and intuitive notations very close to their problem domain. More recently, MDE has been applied to safety-critical applications, where failure may have dramatic consequences, either in terms of economic, ecologic or human losses. These recent application domains call for more robust and more practical approaches for ensuring the correctness of models and model transformations. Testing is the most common technique used in MDE for ensuring the correctness of model transformations, a recurrent, yet unsolved problem in MDE. But testing suffers from the so-called coverage problem, which is unacceptable when safety is at stake. Rather, exhaustive coverage is required in this application domain, which means that transformation designers need to use formal analysis methods and tools to meet this requirement. Unfortunately, two factors seem to limit the use of such methods in an engineer’s daily life. First, a methodological factor, because MDE engineers rarely possess the effective knowledge for deploying formal analysis techniques in their daily life developments. Second, a practical factor, because DSLs do not necessarily have a formal explicit semantics, which is a necessary enabler for exhaustive analysis. In this thesis, we contribute to the problem of formal analysis of model transformations regarding each perspective. On the conceptual side, we propose a methodological framework for engineering verified model transformations based on current best practices. For that purpose, we identify three important dimensions: (i) the transformation being built; (ii) the properties of interest ensuring the transformation’s correctness; and finally, (iii) the verification technique that allows proving these properties with minimal effort. Finding which techniques are better suited for which kind of properties is the concern of the Computer-Aided Verification community. Consequently in this thesis, we focus on studying the relationship between transformations and properties. Our methodological framework introduces two novel notions. A transformation intent gathers all transformations sharing the same purpose, abstracting from the way the transformation is expressed. A property class captures under the same denomination all properties sharing the same form, abstracting away from their underlying property languages. The framework consists of mapping each intent with its characteristic set of property classes, meaning that for proving the correctness of a particular transformation obeying this intent, one has to prove properties of these specific classes. We illustrate the use and utility of our framework through the detailed description of five common intents in MDE, and their application to a case study drawn from the automative software domain, consisting of a chain of more than thirty transformations. On a more practical side, we study the problem of verifying DSLs whose behaviour is expressed with Kermeta. Kermeta is an object-oriented transformation framework aligned with Object Management Group standard specification MOF (Meta-Object Facility). It can be used for defining metamodels and models, as well as their behaviour. Kermeta lacks a formal semantics: we first specify such a semantics, and then choose an appropriate verification domain for handling the analysis one is interested in. Since the semantics is defined at the level of Kermeta’s transformation language itself, our work presents two interesting features: first, any DSL whose behaviour is defined using Kermeta (more precisely, any transformation defined with Kermeta) enjoys a de facto formal underground for free; second, it is easier to define appropriate abstractions for targeting specific analysis for this full-fledged semantics than defining specific semantics for each possible kind of analysis. To illustrate this point, we have selected Maude, a powerful rewriting system based on algebraic specifications equipped with model-checking and theorem-proving capabilities. Maude was chosen because its underlying formalism is close to the mathematical tools we use for specifying the formal semantics, reducing the implementation gap and consequently limiting the possible implementation mistakes. We validate our approach by illustrating behavioural properties of small, yet representative DSLs from the literature

    Modelling and Analysis Using GROOVE

    Get PDF
    In this paper we present case studies that describe how the graph transformation tool GROOVE has been used to model problems from a wide variety of domains. These case studies highlight the wide applicability of GROOVE in particular, and of graph transformation in general. They also give concrete templates for using GROOVE in practice. Furthermore, we use the case studies to analyse the main strong and weak points of GROOVE
    corecore