937 research outputs found

    Pristup specifikaciji i generisanju proizvodnih procesa zasnovan na inženjerstvu vođenom modelima

    Get PDF
    In this thesis, we present an approach to the production process specification and generation based on the model-driven paradigm, with the goal to increase the flexibility of factories and respond to the challenges that emerged in the era of Industry 4.0 more efficiently. To formally specify production processes and their variations in the Industry 4.0 environment, we created a novel domain-specific modeling language, whose models are machine-readable. The created language can be used to model production processes that can be independent of any production system, enabling process models to be used in different production systems, and process models used for the specific production system. To automatically transform production process models dependent on the specific production system into instructions that are to be executed by production system resources, we created an instruction generator. Also, we created generators for different manufacturing documentation, which automatically transform production process models into manufacturing documents of different types. The proposed approach, domain-specific modeling language, and software solution contribute to introducing factories into the digital transformation process. As factories must rapidly adapt to new products and their variations in the era of Industry 4.0, production must be dynamically led and instructions must be automatically sent to factory resources, depending on products that are to be created on the shop floor. The proposed approach contributes to the creation of such a dynamic environment in contemporary factories, as it allows to automatically generate instructions from process models and send them to resources for execution. Additionally, as there are numerous different products and their variations, keeping the required manufacturing documentation up to date becomes challenging, which can be done automatically by using the proposed approach and thus significantly lower process designers' time.У овој дисертацији представљен је приступ спецификацији и генерисању производних процеса заснован на инжењерству вођеном моделима, у циљу повећања флексибилности постројења у фабрикама и ефикаснијег разрешавања изазова који се појављују у ери Индустрије 4.0. За потребе формалне спецификације производних процеса и њихових варијација у амбијенту Индустрије 4.0, креиран је нови наменски језик, чије моделе рачунар може да обради на аутоматизован начин. Креирани језик има могућност моделовања производних процеса који могу бити независни од производних система и тиме употребљени у различитим постројењима или фабрикама, али и производних процеса који су специфични за одређени систем. Како би моделе производних процеса зависних од конкретног производног система било могуће на аутоматизован начин трансформисати у инструкције које ресурси производног система извршавају, креиран је генератор инструкција. Такође су креирани и генератори техничке документације, који на аутоматизован начин трансформишу моделе производних процеса у документе различитих типова. Употребом предложеног приступа, наменског језика и софтверског решења доприноси се увођењу фабрика у процес дигиталне трансформације. Како фабрике у ери Индустрије 4.0 морају брзо да се прилагоде новим производима и њиховим варијацијама, неопходно је динамички водити производњу и на аутоматизован начин слати инструкције ресурсима у фабрици, у зависности од производа који се креирају у конкретном постројењу. Тиме што је у предложеном приступу могуће из модела процеса аутоматизовано генерисати инструкције и послати их ресурсима, доприноси се креирању једног динамичког окружења у савременим фабрикама. Додатно, услед великог броја различитих производа и њихових варијација, постаје изазовно одржавати неопходну техничку документацију, што је у предложеном приступу могуће урадити на аутоматизован начин и тиме значајно уштедети време пројектаната процеса.U ovoj disertaciji predstavljen je pristup specifikaciji i generisanju proizvodnih procesa zasnovan na inženjerstvu vođenom modelima, u cilju povećanja fleksibilnosti postrojenja u fabrikama i efikasnijeg razrešavanja izazova koji se pojavljuju u eri Industrije 4.0. Za potrebe formalne specifikacije proizvodnih procesa i njihovih varijacija u ambijentu Industrije 4.0, kreiran je novi namenski jezik, čije modele računar može da obradi na automatizovan način. Kreirani jezik ima mogućnost modelovanja proizvodnih procesa koji mogu biti nezavisni od proizvodnih sistema i time upotrebljeni u različitim postrojenjima ili fabrikama, ali i proizvodnih procesa koji su specifični za određeni sistem. Kako bi modele proizvodnih procesa zavisnih od konkretnog proizvodnog sistema bilo moguće na automatizovan način transformisati u instrukcije koje resursi proizvodnog sistema izvršavaju, kreiran je generator instrukcija. Takođe su kreirani i generatori tehničke dokumentacije, koji na automatizovan način transformišu modele proizvodnih procesa u dokumente različitih tipova. Upotrebom predloženog pristupa, namenskog jezika i softverskog rešenja doprinosi se uvođenju fabrika u proces digitalne transformacije. Kako fabrike u eri Industrije 4.0 moraju brzo da se prilagode novim proizvodima i njihovim varijacijama, neophodno je dinamički voditi proizvodnju i na automatizovan način slati instrukcije resursima u fabrici, u zavisnosti od proizvoda koji se kreiraju u konkretnom postrojenju. Time što je u predloženom pristupu moguće iz modela procesa automatizovano generisati instrukcije i poslati ih resursima, doprinosi se kreiranju jednog dinamičkog okruženja u savremenim fabrikama. Dodatno, usled velikog broja različitih proizvoda i njihovih varijacija, postaje izazovno održavati neophodnu tehničku dokumentaciju, što je u predloženom pristupu moguće uraditi na automatizovan način i time značajno uštedeti vreme projektanata procesa

    Software Design Change Artifacts Generation through Software Architectural Change Detection and Categorisation

    Get PDF
    Software is solely designed, implemented, tested, and inspected by expert people, unlike other engineering projects where they are mostly implemented by workers (non-experts) after designing by engineers. Researchers and practitioners have linked software bugs, security holes, problematic integration of changes, complex-to-understand codebase, unwarranted mental pressure, and so on in software development and maintenance to inconsistent and complex design and a lack of ways to easily understand what is going on and what to plan in a software system. The unavailability of proper information and insights needed by the development teams to make good decisions makes these challenges worse. Therefore, software design documents and other insightful information extraction are essential to reduce the above mentioned anomalies. Moreover, architectural design artifacts extraction is required to create the developer’s profile to be available to the market for many crucial scenarios. To that end, architectural change detection, categorization, and change description generation are crucial because they are the primary artifacts to trace other software artifacts. However, it is not feasible for humans to analyze all the changes for a single release for detecting change and impact because it is time-consuming, laborious, costly, and inconsistent. In this thesis, we conduct six studies considering the mentioned challenges to automate the architectural change information extraction and document generation that could potentially assist the development and maintenance teams. In particular, (1) we detect architectural changes using lightweight techniques leveraging textual and codebase properties, (2) categorize them considering intelligent perspectives, and (3) generate design change documents by exploiting precise contexts of components’ relations and change purposes which were previously unexplored. Our experiment using 4000+ architectural change samples and 200+ design change documents suggests that our proposed approaches are promising in accuracy and scalability to deploy frequently. Our proposed change detection approach can detect up to 100% of the architectural change instances (and is very scalable). On the other hand, our proposed change classifier’s F1 score is 70%, which is promising given the challenges. Finally, our proposed system can produce descriptive design change artifacts with 75% significance. Since most of our studies are foundational, our approaches and prepared datasets can be used as baselines for advancing research in design change information extraction and documentation

    Exploiting Process Algebras and BPM Techniques for Guaranteeing Success of Distributed Activities

    Get PDF
    The communications and collaborations among activities, pro- cesses, or systems, in general, are the base of complex sys- tems defined as distributed systems. Given the increasing complexity of their structure, interactions, and functionali- ties, many research areas are interested in providing mod- elling techniques and verification capabilities to guarantee their correctness and satisfaction of properties. In particular, the formal methods community provides robust verification techniques to prove system properties. However, most ap- proaches rely on manually designed formal models, making the analysis process challenging because it requires an expert in the field. On the other hand, the BPM community pro- vides a widely used graphical notation (i.e., BPMN) to design internal behaviour and interactions of complex distributed systems that can be enhanced with additional features (e.g., privacy technologies). Furthermore, BPM uses process min- ing techniques to automatically discover these models from events observation. However, verifying properties and ex- pected behaviour, especially in collaborations, still needs a solid methodology. This thesis aims at exploiting the features of the formal meth- ods and BPM communities to provide approaches that en- able formal verification over distributed systems. In this con- text, we propose two approaches. The modelling-based ap- proach starts from BPMN models and produces process al- gebra specifications to enable formal verification of system properties, including privacy-related ones. The process mining- based approach starts from logs observations to automati- xv cally generate process algebra specifications to enable veri- fication capabilities

    Provision and Collection of Safety Evidence: A Systematic Literature Review

    Get PDF
    Safety-Critical Systems (SCS) are becoming more and more present in modern societies’ daily lives, increasing people’s dependence on them. Current SCS are firmly based on computational technology; possible failures in the operation of these systems can lead to accidents and endanger human life, as well as damage the environment and property. SCS are present in many areas such as avionics, automotive systems, industrial plants (chemical, oil & gas, and nuclear), medical devices, railroad control, defense, and aerospace systems. Companies that develop SCS must present evidence of their safety to obtain certification and authorization. This paper presents a Systematic Literature Review (SLR) to investigate processes, tools, and techniques for collecting and managing safety evidence in SCS. The authors conducted this SLR according to the guidelines proposed by Kitchenham and Charters. The SLR comprises seven (7) research questions that investigate essential aspects of collecting and managing safety evidence. The primary studies analyzed in this SLR were selected based on a search string applied into four data sources: ACM, IEEE Xplore, SpringerLink, and ScienceDirect. Data extraction considered (fifty-one) 51 primary studies. The authors identified eleven (11) different approaches covering processes, tools, and techniques for collecting and managing safety evidence. Despite other SLR works conducted about safety evidence, none of them focused on the details related to safety evidence collection. We found that very few approaches focused specifically on the process of collecting safety evidence

    Design of the Electronics Subsystem for a High-Resolution Electro-Optical Payload Using Systems Engineering Approach

    Get PDF
    Satellite imagers, in contrast to commercial imagers, demand exceptional performance and operate under harsh conditions. The camera is an essential part of an Earth Observation Electro Optical (EO) payload that is designed in response to needs such as military demands, changes in world politics, inception of new technologies, operational requirements and experiments. As one of the key subsystems, the Imager Electronics Subsystem of a high-resolution EO payload plays very important role in the accomplishment of mission objectives and payload goals. Hence, these Electronics Subsystems require a special design approach optimised for their needs and meticulous characterizations of high-resolution space applications. This dissertation puts forward the argument that the system being studied is a subsystem of a larger system and that systems engineering principles can be applied to the subsystem design process also. The aim of this dissertation is to design the Imager Electronics Subsystem of a high-resolution Electro Optical Payload using a systems engineering approach to represent a logical integration and test flow using the space industry guidelines. The Imager Electronics Subsystem consists of group of elements forming the functional chain from the Image Sensors on the Focal Plane down to electrical interface to the Data Handling Unit and power interface of the satellite. This subsystem is responsible for collecting light in different spectral bands, converting this light to data of different spectral bands from image sensors for high-resolution imaging, performing operations for aligning, tagging and multiplexing along with incorporating internal and external interfaces

    MeROS: SysML-based Metamodel for ROS-based Systems

    Full text link
    The complexity of today's robot control systems implies difficulty in developing them efficiently and reliably. Systems engineering (SE) and frameworks come to help. The framework metamodels are needed to support the standardisation and correctness of the created application models. Although the use of frameworks is widespread nowadays, for the most popular of them, Robot Operating System (ROS) version 1, a contemporary metamodel, has been missing so far. This article proposes a new metamodel for ROS (MeROS), which addresses both the running system and developer workspace. For compatibility with the latest versions of ROS 1, the metamodel includes the latest ROS 1 concepts such as nodelet, action, and metapackage. An essential addition to the original ROS concepts is the grouping concepts, which provide an opportunity to illustrate the decomposition of the system, as well as varying degrees of detail in its presentation. The metamodel is derived from the requirements and then verified on the practical example of the Rico assistive robot. The matter is described in the SysML language, supported by standard development tools to conduct projects in the spirit of SE

    Interactive system modelling for the Internet of Things

    Get PDF
    The rapid growth in the number of Internet of Things (IoT) systems and their increasing use in safety-critical domains has led to the need for an evolution of development methods. Model-Driven Development (MDD) approaches have been used in software engineering to reduce development time and minimize errors in implemented systems. This paper introduces a novel Model-Driven Development (MDD) approach for Internet of Things (IoT) systems which considers interactivity from the perspective of both users and IoT components. A real-world example is presented to explain the motivation for the work and demonstrate the benefits and use of lightweight interactive system models adapted for the design and development of IoT systems

    Validation and Verification of Safety-Critical Systems in Avionics

    Get PDF
    This research addresses the issues of safety-critical systems verification and validation. Safety-critical systems such as avionics systems are complex embedded systems. They are composed of several hardware and software components whose integration requires verification and testing in compliance with the Radio Technical Commission for Aeronautics standards and their supplements (RTCA DO-178C). Avionics software requires certification before its deployment into an aircraft system, and testing is mandatory for certification. Until now, the avionics industry has relied on expensive manual testing. The industry is searching for better (quicker and less costly) solutions. This research investigates formal verification and automatic test case generation approaches to enhance the quality of avionics software systems, ensure their conformity to the standard, and to provide artifacts that support their certification. The contributions of this thesis are in model-based automatic test case generations approaches that satisfy MC/DC criterion, and bidirectional requirement traceability between low-level requirements (LLRs) and test cases. In the first contribution, we integrate model-based verification of properties and automatic test case generation in a single framework. The system is modeled as an extended finite state machine model (EFSM) that supports both the verification of properties and automatic test case generation. The EFSM models the control and dataflow aspects of the system. For verification, we model the system and some properties and ensure that properties are correctly propagated to the implementation via mandatory testing. For testing, we extended an existing test case generation approach with MC/DC criterion to satisfy RTCA DO-178C requirements. Both local test cases for each component and global test cases for their integration are generated. The second contribution is a model checking-based approach for automatic test case generation. In the third contribution, we developed an EFSM-based approach that uses constraints solving to handle test case feasibility and addresses bidirectional requirements traceability between LLRs and test cases. Traceability elements are determined at a low-level of granularity, and then identified, linked to their source artifact, created, stored, and retrieved for several purposes. Requirements’ traceability has been extensively studied but not at the proposed low-level of granularity

    Mobile agent path planning under uncertain environment using reinforcement learning and probabilistic model checking

    Get PDF
    The major challenge in mobile agent path planning, within an uncertain environment, is effectively determining an optimal control model to discover the target location as quickly as possible and evaluating the control system's reliability. To address this challenge, we introduce a learning-verification integrated mobile agent path planning method to achieve both the effectiveness and the reliability. More specifically, we first propose a modified Q-learning algorithm (a popular reinforcement learning algorithm), called Q EA−learning algorithm, to find the best Q-table in the environment. We then determine the location transition probability matrix, and establish a probability model using the assumption that the agent selects a location with a higher Q-value. Secondly, the learnt behaviour of the mobile agent based on Q EA−learning algorithm, is formalized as a Discrete-time Markov Chain (DTMC) model. Thirdly, the required reliability requirements of the mobile agent control system are specified using Probabilistic Computation Tree Logic (PCTL). In addition, the DTMC model and the specified properties are taken as the input of the Probabilistic Model Checker PRISM for automatic verification. This is preformed to evaluate and verify the control system's reliability. Finally, a case study of a mobile agent walking in a grids map is used to illustrate the proposed learning algorithm. Here we have a special focus on the modelling approach demonstrating how PRISM can be used to analyse and evaluate the reliability of the mobile agent control system learnt via the proposed algorithm. The results show that the path identified using the proposed integrated method yields the largest expected reward.</p
    corecore