252 research outputs found

    Security Verification of Secure MANET Routing Protocols

    Get PDF
    Secure mobile ad hoc network (MANET) routing protocols are not tested thoroughly against their security properties. Previous research focuses on verifying secure, reactive, accumulation-based routing protocols. An improved methodology and framework for secure MANET routing protocol verification is proposed which includes table-based and proactive protocols. The model checker, SPIN, is selected as the core of the secure MANET verification framework. Security is defined by both accuracy and availability: a protocol forms accurate routes and these routes are always accurate. The framework enables exhaustive verification of protocols and results in a counter-example if the protocol is deemed insecure. The framework is applied to models of the Optimized Link-State Routing (OLSR) and Secure OLSR protocol against five attack vectors. These vectors are based on known attacks against each protocol. Vulnerabilities consistent with published findings are automatically revealed. No unknown attacks were found; however, future attack vectors may lead to new attacks. The new framework for verifying secure MANET protocols extends verification capabilities to table-based and proactive protocols

    A lightweight distributed super peer election algorithm for unstructured dynamic P2P systems

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresNowadays with the current growth of information exchange, and the increasing mobility of devices, it becomes essential to use technology to monitor this development. For that P2P networks are used, the exchange of information between agencies is facilitated, these now being applied in mobile networks, including MANETs, where they have special features such as the fact that they are semi-centralized, where it takes peers more ability to make a greater role in the network. But those peer with more capacity, which are used in the optimization of various parameters of these systems, such as optimization\to research, are difficult to identify due to the fact that the network does not have a fixed topology, be constantly changing, (we like to go online and offline, to change position, etc.) and not to allow the exchange of large messages. To this end, this thesis proposes a distributed election algorithm of us greater capacity among several possible goals, enhance research in the network. This includes distinguishing characteristics, such as election without global knowledge network, minimal exchange of messages, distributed decision made without dependence on us and the possibility of influencing the election outcome as the special needs of the network

    Intelligent MANET optimisation system

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In the literature, various Mobile Ad hoc NETwork (MANET) routing protocols proposed. Each performs the best under specific context conditions, for example under high mobility or less volatile topologies. In existing MANET, the degradation in the routing protocol performance is always associated with changes in the network context. To date, no MANET routing protocol is able to produce optimal performance under all possible conditions. The core aim of this thesis is to solve the routing problem in mobile Ad hoc networks by introducing an optimum system that is in charge of the selection of the running routing protocol at all times, the system proposed in this thesis aims to address the degradation mentioned above. This optimisation system is a novel approach that can cope with the network performance’s degradation problem by switching to other routing protocol. The optimisation system proposed for MANET in this thesis adaptively selects the best routing protocol using an Artificial Intelligence mechanism according to the network context. In this thesis, MANET modelling helps in understanding the network performance through different contexts, as well as the models’ support to the optimisation system. Therefore, one of the main contributions of this thesis is the utilisation and comparison of various modelling techniques to create representative MANET performance models. Moreover, the proposed system uses an optimisation method to select the optimal communication routing protocol for the network context. Therefore, to build the proposed system, different optimisation techniques were utilised and compared to identify the best optimisation technique for the MANET intelligent system, which is also an important contribution of this thesis. The parameters selected to describe the network context were the network size and average mobility. The proposed system then functions by varying the routing mechanism with the time to keep the network performance at the best level. The selected protocol has been shown to produce a combination of: higher throughput, lower delay, fewer retransmission attempts, less data drop, and lower load, and was thus chosen on this basis. Validation test results indicate that the identified protocol can achieve both a better network performance quality than other routing protocols and a minimum cost function of 4.4%. The Ad hoc On Demand Distance Vector (AODV) protocol comes in second with a cost minimisation function of 27.5%, and the Optimised Link State Routing (OLSR) algorithm comes in third with a cost minimisation function of 29.8%. Finally, The Dynamic Source Routing (DSR) algorithm comes in last with a cost minimisation function of 38.3%

    Including context in a routing algorithm for the internet of things

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia InformáticaThe “Internet of Things” assumes that a large number of devices which are used on a daily basis will eventually become connected to the Internet. This scenario will provide room for a large set of new applications, however the network connections of an enormous set of nodes, which can be connected and disconnected, can move around and which have limitations with regards to their processing and communication capabilities, raises the need for the development of new message routing algorithms, different from those being in use today. In this thesis, a contribution is made towards the development of this type of algorithms. In particular, the idea which is tested is whether routing algorithms can improve their performance at various levels, such as, message delivery time, number of messages lost, power consumption, etc., if in the routing decisions these algorithms can make use of the concept of “Context”. Within the framework of this thesis, the “Context” is the organized collection of information which the routing algorithm collects from the environment surrounding the network nodes, and which allows it to make better routing decisions. This information can be related to low-level issues, such as, node location, power required to send a message, etc., as well as, with constraints related to the application, such as, message priority, maximum delivery time, etc. In order to evaluate this approach, this thesis proposes a routing algorithm called C-AODV. As the name suggests, it is based on the ADOV algorithm, however it is modified in several aspects; in particular, the possibility of using information collected from the context can be utilized to improve message routing. In order to test the proposed solution, several tests were performed on the NS-3 simulator which allowed the evaluation of the algorithm functionalities. The tests performed indicate that the proposed solution is valid

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Factors Impacting Key Management Effectiveness in Secured Wireless Networks

    Get PDF
    The use of a Public Key Infrastructure (PKI) offers a cryptographic solution that can overcome many, but not all, of the MANET security problems. One of the most critical aspects of a PKI system is how well it implements Key Management. Key Management deals with key generation, key storage, key distribution, key updating, key revocation, and certificate service in accordance with security policies over the lifecycle of the cryptography. The approach supported by traditional PKI works well in fixed wired networks, but it may not appropriate for MANET due to the lack of fixed infrastructure to support the PKI. This research seeks to identify best practices in securing networks which may be applied to new network architectures

    Analysis of the OLSR Protocol by Using Formal Passive Testing

    Get PDF
    In this paper we apply a passive testing methodology to the analysis of a non-trivial system. In our framework, so-called invariants provide us with a formal representation of the requirements of the system. In order to precisely express new properties in multi-node environments, in this paper we introduce a new kind of invariants. We apply the resulting framework to perform a complete study of a MANET routing protocol: The Optimized Link State Routing protocol

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    Routing and mobility strategies for mobile ad hoc networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Hybrid routing in delay tolerant networks

    Get PDF
    This work addresses the integration of today\\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented
    • …
    corecore