86,080 research outputs found

    Conceptual modelling: Towards detecting modelling errors in engineering applications

    Get PDF
    Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer ā€œsimpleā€ objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    Towards Autopoietic Computing

    Full text link
    A key challenge in modern computing is to develop systems that address complex, dynamic problems in a scalable and efficient way, because the increasing complexity of software makes designing and maintaining efficient and flexible systems increasingly difficult. Biological systems are thought to possess robust, scalable processing paradigms that can automatically manage complex, dynamic problem spaces, possessing several properties that may be useful in computer systems. The biological properties of self-organisation, self-replication, self-management, and scalability are addressed in an interesting way by autopoiesis, a descriptive theory of the cell founded on the concept of a system's circular organisation to define its boundary with its environment. In this paper, therefore, we review the main concepts of autopoiesis and then discuss how they could be related to fundamental concepts and theories of computation. The paper is conceptual in nature and the emphasis is on the review of other people's work in this area as part of a longer-term strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure

    ISML: an interface specification meta-language

    Get PDF
    In this paper we present an abstract metaphor model situated within a model-based user interface framework. The inclusion of metaphors in graphical user interfaces is a well established, but mostly craft-based strategy to design. A substantial body of notations and tools can be found within the model-based user interface design literature, however an explicit treatment of metaphor and its mappings to other design views has yet to be addressed. We introduce the Interface Specification Meta-Language (ISML) framework and demonstrate its use in comparing the semantic and syntactic features of an interactive system. Challenges facing this research are outlined and further work proposed

    Reclaiming human machine nature

    Get PDF
    Extending and modifying his domain of life by artifact production is one of the main characteristics of humankind. From the first hominid, who used a wood stick or a stone for extending his upper limbs and augmenting his gesture strength, to current systems engineers who used technologies for augmenting human cognition, perception and action, extending human body capabilities remains a big issue. From more than fifty years cybernetics, computer and cognitive sciences have imposed only one reductionist model of human machine systems: cognitive systems. Inspired by philosophy, behaviorist psychology and the information treatment metaphor, the cognitive system paradigm requires a function view and a functional analysis in human systems design process. According that design approach, human have been reduced to his metaphysical and functional properties in a new dualism. Human body requirements have been left to physical ergonomics or "physiology". With multidisciplinary convergence, the issues of "human-machine" systems and "human artifacts" evolve. The loss of biological and social boundaries between human organisms and interactive and informational physical artifact questions the current engineering methods and ergonomic design of cognitive systems. New developpment of human machine systems for intensive care, human space activities or bio-engineering sytems requires grounding human systems design on a renewed epistemological framework for future human systems model and evidence based "bio-engineering". In that context, reclaiming human factors, augmented human and human machine nature is a necessityComment: Published in HCI International 2014, Heraklion : Greece (2014

    Hamiltonian Formulation of Quantum Error Correction and Correlated Noise: The Effects Of Syndrome Extraction in the Long Time Limit

    Get PDF
    We analyze the long time behavior of a quantum computer running a quantum error correction (QEC) code in the presence of a correlated environment. Starting from a Hamiltonian formulation of realistic noise models, and assuming that QEC is indeed possible, we find formal expressions for the probability of a faulty path and the residual decoherence encoded in the reduced density matrix. Systems with non-zero gate times (``long gates'') are included in our analysis by using an upper bound on the noise. In order to introduce the local error probability for a qubit, we assume that propagation of signals through the environment is slower than the QEC period (hypercube assumption). This allows an explicit calculation in the case of a generalized spin-boson model and a quantum frustration model. The key result is a dimensional criterion: If the correlations decay sufficiently fast, the system evolves toward a stochastic error model for which the threshold theorem of fault-tolerant quantum computation has been proven. On the other hand, if the correlations decay slowly, the traditional proof of this threshold theorem does not hold. This dimensional criterion bears many similarities to criteria that occur in the theory of quantum phase transitions.Comment: 19 pages, 5 figures. Includes response to arXiv:quant-ph/0702050. New title and an additional exampl

    Affordances and Safe Design of Assistance Wearable Virtual Environment of Gesture

    Get PDF
    Safety and reliability are the main issues for designing assistance wearable virtual environment of technical gesture in aerospace, or health application domains. That needs the integration in the same isomorphic engineering framework of human requirements, systems requirements and the rationale of their relation to the natural and artifactual environment.To explore coupling integration and design functional organization of support technical gesture systems, firstly ecological psychologyprovides usa heuristicconcept: the affordance. On the other hand mathematical theory of integrative physiology provides us scientific concepts: the stabilizing auto-association principle and functional interaction.After demonstrating the epistemological consistence of these concepts, we define an isomorphic framework to describe and model human systems integration dedicated to human in-the-loop system engineering.We present an experimental approach of safe design of assistance wearable virtual environment of gesture based in laboratory and parabolic flights. On the results, we discuss the relevance of our conceptual approach and the applications to future assistance of gesture wearable systems engineering
    • ā€¦
    corecore