56,673 research outputs found

    An architecture-based dependability modeling framework using AADL

    Full text link
    For efficiency reasons, the software system designers' will is to use an integrated set of methods and tools to describe specifications and designs, and also to perform analyses such as dependability, schedulability and performance. AADL (Architecture Analysis and Design Language) has proved to be efficient for software architecture modeling. In addition, AADL was designed to accommodate several types of analyses. This paper presents an iterative dependency-driven approach for dependability modeling using AADL. It is illustrated on a small example. This approach is part of a complete framework that allows the generation of dependability analysis and evaluation models from AADL models to support the analysis of software and system architectures, in critical application domains

    Model based safety analysis for an Unmanned Aerial System

    Get PDF
    This paper aims at describing safety architectures of autonomous systems by using Event-B formal method. The autonomous systems combine various activities which can be organised in layers. The Event-B formalism well supports the rigorous design of this kind of systems. Its refinement mechanism allows a progressive modelling by checking the correctness and the relevance of the models by discharging proof obligations. The application of the Event-B method within the framework of layered architecture specification enables the emergence of desired global properties with relation to layer interactions. The safety objectives are derived in each layer and they involve static and dynamic properties such as an independence property, a redundant property or a sequential property. The originality of our approach is to consider a refinement process between two layers in which the abstract model is the model of the lower layer. In our modelling, we distinguish nominal behaviour and abnormal behaviour in order to well establish failure propagation in our architecture

    FDIR architectures for autonomous spacecraft: specification and assessment with event-B

    Get PDF
    On-board Fault Detection, Isolation and Recovery (FDIR) systems are considered to ensure the safety and to increase the autonomy of spacecrafts. They shall be carefully designed and validated. Theirimplementation involves a relevant knowledge of items like functions and architectures of the system, and a fault model in relation with these items. Thus, the event-B method is well suited to correctly specify and validate on-board safety architectures. This paper focuses on the FDIR concept presentation and the use of event-B for formalising and for refining the FDIR concept

    Developing Experimental Models for NASA Missions with ASSL

    Full text link
    NASA's new age of space exploration augurs great promise for deep space exploration missions whereby spacecraft should be independent, autonomous, and smart. Nowadays NASA increasingly relies on the concepts of autonomic computing, exploiting these to increase the survivability of remote missions, particularly when human tending is not feasible. Autonomic computing has been recognized as a promising approach to the development of self-managing spacecraft systems that employ onboard intelligence and rely less on control links. The Autonomic System Specification Language (ASSL) is a framework for formally specifying and generating autonomic systems. As part of long-term research targeted at the development of models for space exploration missions that rely on principles of autonomic computing, we have employed ASSL to develop formal models and generate functional prototypes for NASA missions. This helps to validate features and perform experiments through simulation. Here, we discuss our work on developing such missions with ASSL.Comment: 7 pages, 4 figures, Workshop on Formal Methods for Aerospace (FMA'09

    Feasibility of EPC to BPEL Model Transformations Based on Ontology and Patterns

    Get PDF
    Model-Driven Engineering holds the promise of transforming\ud business models into code automatically. This requires the concept of\ud model transformation. In this paper, we assess the feasibility of model\ud transformations from Event-driven Process Chain models to Business\ud Process Execution Language specifications. To this purpose, we use a\ud framework based on ontological analysis and workflow patterns in order\ud to predict the possibilities/limitations of such a model transformation.\ud The framework is validated by evaluating the transformation of several\ud models, including a real-life case.\ud The framework indicates several limitations for transformation. Eleven\ud guidelines and an approach to apply them provide methodological support\ud to improve the feasibility of model transformation from EPC to\ud BPEL

    Model and Integrate Medical Resource Available Times and Relationships in Verifiably Correct Executable Medical Best Practice Guideline Models (Extended Version)

    Full text link
    Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients' death rate is significantly reduced by computerizing medical best practice guidelines. Recent data also show that some morbidity and mortality in emergency care are directly caused by delayed or interrupted treatment due to lack of medical resources. However, medical guidelines usually do not provide guidance on medical resource demands and how to manage potential unexpected delays in resource availability. If medical resources are temporarily unavailable, safety properties in existing executable medical guideline models may fail which may cause increased risk to patients under care. The paper presents a separately model and jointly verify (SMJV) architecture to separately model medical resource available times and relationships and jointly verify safety properties of existing medical best practice guideline models with resource models being integrated in. The SMJV architecture allows medical staff to effectively manage medical resource demands and unexpected resource availability delays during emergency care. The separated modeling approach also allows different domain professionals to make independent model modifications, facilitates the management of frequent resource availability changes, and enables resource statechart reuse in multiple medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of the SMJV architecture. The case study indicates that the SMJV architecture is able to identify unsafe properties caused by unexpected resource delays.Comment: full version, 12 page

    Towards a business-IT alignment maturity model for collaborative networked organizations

    Get PDF
    Aligning business and IT in networked organizations is a complex endeavor because in such settings, business-IT alignment is driven by economic processes instead of by centralized decision-making processes. In order to facilitate managing business-IT alignment in networked organizations, we need a maturity model that allows collaborating organizations to assess the current state of alignment and take appropriate action to improve it where needed. In this paper we propose the first version of such a model, which we derive from various alignment models and theories
    • 

    corecore